6 Quantum electrodynamics

We can finally write down and work with the QED Lagrangian. We want our theory of electrodynamics to include electrons and photons, i.e. our free Lagrangian will be the sum of (319) and (319)

0=ψ¯(iγm)ψ14FμνFμν.\displaystyle\mathcal{L}_{0}=\bar{\psi}(i\gamma\cdot\partial-m)\psi-\frac{1}{4% }F^{\mu\nu}F_{\mu\nu}\,. (358)

To achieve interactions between the two types of particles, recall the concept of minimal coupling: in classical field theory one couples a particle to the electromagnetic field by shifting its momentum ppqAp\to p-qA. The quantum equivalent of this is shift

iμiμqAμiDμ.\displaystyle i\partial_{\mu}\to i\partial_{\mu}-qA_{\mu}\equiv iD_{\mu}\,. (359)

The object DμD_{\mu} is usually called the gauge-covariant derivative for reasons we will see shortly. The means the QED Lagrangian can be written as

=ψ¯(iγDm)ψ14FμνFμν=0eψ¯γμψAμ.\displaystyle\mathcal{L}=\bar{\psi}(i\gamma\cdot D-m)\psi-\frac{1}{4}F^{\mu\nu% }F_{\mu\nu}=\mathcal{L}_{0}-e\bar{\psi}\gamma^{\mu}\psi A_{\mu}\,. (360)

The simplicity of this results is one of the most remarkable features of modern physics. It accurately describes nature except for gravity and nuclear phenomena which require the strong and weak nuclear forces. However, both of these have the same structure (albeit with a different gauge group) and their fields can be absorbed into FF and DD.

We can write down Feynman rules for this theory

For each internal fermion
A fermion of momentum p flowing from a to b
=(iγpm+iϵ)ab,\displaystyle=\bigg{(}\frac{i}{\gamma\cdot p-m+i\epsilon}\bigg{)}_{ab}\,, (361)
For each internal photon
A photon of momentum p flowing from μto ν
=iημνp2+iϵ,\displaystyle=\frac{-i\eta_{\mu\nu}}{p^{2}+i\epsilon}\,, (362)
For each vertex
A vertex connecting two fermions (indices a and b) with a photon (index μ)
=ieγabμ,\displaystyle=ie\gamma^{\mu}_{ab}\,, (363)
For each external photon
An external photon leaving a blob with momentum p and index μ
=ϵμ(p)(final),\displaystyle=\epsilon^{*}_{\mu}(p)\qquad\quad\ \text{(final)}\,, (364)
For each external photon
An external photon entering a blob with momentum p and index μ
=ϵμ(p)(initial),\displaystyle=\epsilon_{\mu}(p)\qquad\quad\ \text{(initial)}\,, (365)
For each external fermion
An external fermion leaving a blob with momentum p and index a. The momentum flow and spinor flow are aligned
=(u¯s(p))a(final),\displaystyle=\big{(}\bar{u}_{s}(p)\big{)}_{a}\qquad\text{(final)}\,, (366)
For each external fermion
An external fermion entering a blob with momentum p and index a. The momentum flow and spinor flow are aligned
=(us(p))a(initial),\displaystyle=\big{(}u_{s}(p)\big{)}_{a}\qquad\text{(initial)}\,, (367)
For each external antifermion
An external fermion leaving a blob with momentum p and index a. The momentum flow and spinor flow are not aligned
=(vs(p))a(final),\displaystyle=\big{(}v_{s}(p)\big{)}_{a}\qquad\text{(final)}\,, (368)
For each external antifermion
An external fermion entering a blob with momentum p and index a. The momentum flow and spinor flow are not aligned
=(v¯s(p))a(initial).\displaystyle=\big{(}\bar{v}_{s}(p)\big{)}_{a}\qquad\text{(initial)}\,. (369)

We use the black blob to indicate the rest of the process and the direction of the momentum arrow relative to it to indicate incoming or outgoing particles.

We have used the spinors uu and vv to denote external fermion fields and the polarisation vector ϵ\epsilon to denote external photons. For fermions, we have to keep track of both the flow of momentum and the spinor flow which is what is indicated by the arrow on the line. For the propagator, we have assumed they are aligned, otherwise we pick up a relative sign between γp\gamma\cdot p and mm.

Further note that we will drop the spinor indices in the future and often just write e.g.

u¯(p)γμv(q)[u¯sp(p)]a[γμ]a,b[vsq(q)]b.\displaystyle\bar{u}(p)\gamma^{\mu}v(q)\equiv\big{[}\bar{u}_{s_{p}}(p)\big{]}_% {a}\big{[}\gamma^{\mu}\big{]}_{a,b}\big{[}v_{s_{q}}(q)\big{]}_{b}\,. (370)

6.1 Gauge structure

Note that (360) has a gauge symmetry

ψ(x)eiα(x)ψ(x)whileAμ(x)Aμ1qμα(x).\displaystyle\psi(x)\to{\rm e}^{i\alpha(x)}\psi(x)\quad\text{while}\quad A_{% \mu}(x)\to A_{\mu}-\frac{1}{q}\partial_{\mu}\alpha(x)\,. (371)

The gauge-covariant derivative transforms like the field under this symmetry

Dμψ(x)(μ+ieAμi(μα))eiαψ(x)=eiα(μ+ieAμ)ψ(x)=eiαDμψ(x),\displaystyle D_{\mu}\psi(x)\to\Big{(}\partial_{\mu}+ieA_{\mu}-i(\partial_{\mu% }\alpha)\Big{)}{\rm e}^{i\alpha}\psi(x)={\rm e}^{i\alpha}\Big{(}\partial_{\mu}% +ieA_{\mu}\Big{)}\psi(x)={\rm e}^{i\alpha}D_{\mu}\psi(x)\,, (372)

leaving \mathcal{L} invariant. This means it would have been possible to state \mathcal{L} based on the requirement that the gauge symmetry holds without thinking about minimal coupling at all!

The photon as a consequence of local symmetry

In fact, we can go further and derive the complete Lagrangian, including the photon field, from the fact that

=ψ¯(iγm)ψ\displaystyle\mathcal{L}=\bar{\psi}(i\gamma\cdot\partial-m)\psi (373)

should be invariant under local gauge transformation

ψ(x)eiα(x)ψ(x).\displaystyle\psi(x)\to{\rm e}^{i\alpha(x)}\psi(x)\,. (374)

The mass term is obviously invariant but what about the derivative? Due to the gauge symmetry, the derivative μ\partial_{\mu} no longer has any geometric meaning since the phase α(x)\alpha(x) could mess things up. Let us therefore define a new derivate DμD_{\mu} which compares two nearby points along a direction n^μ\hat{n}^{\mu}

n^μDμψ=limϵ0ψ(x+ϵn^)U(x+ϵn^,x)ψ(x)ϵ.\displaystyle\hat{n}^{\mu}D_{\mu}\psi=\lim_{\epsilon\to 0}\frac{\psi(x+% \epsilon\hat{n})-U(x+\epsilon\hat{n},x)\psi(x)}{\epsilon}\,. (375)

Here we had to introduce a new object, UU, which for the normal derivative μ\partial_{\mu} is just U=1U=1 but accounts for the change α\alpha. For \mathcal{L} to be invariant, we need this new derivative to transform like the field itself, i.e.

n^μDμψlimϵ0eiα(x+ϵn^)ψ(x+ϵn^)U(x+ϵn^,x)eiα(x)ψ(x)ϵ=!eiα(x)n^μDμψ.\displaystyle\hat{n}^{\mu}D_{\mu}\psi\to\lim_{\epsilon\to 0}\frac{{\rm e}^{i% \alpha(x+\epsilon\hat{n})}\psi(x+\epsilon\hat{n})-U^{\prime}(x+\epsilon\hat{n}% ,x){\rm e}^{i\alpha(x)}\psi(x)}{\epsilon}\stackrel{{\scriptstyle!}}{{=}}{\rm e% }^{i\alpha(x)}\hat{n}^{\mu}D_{\mu}\psi\,. (376)

The only way to more this work generally is if UU transforms as

U(y,x)U(y,x)=eiα(y)U(y,x)eiα(x).\displaystyle U(y,x)\to U^{\prime}(y,x)={\rm e}^{i\alpha(y)}U(y,x){\rm e}^{-i% \alpha(x)}\,. (377)

Then we have

n^μDμψlimϵ0eiα(x+ϵn^)ψ(x+ϵn^)U(x+ϵn^,x)ψ(x)ϵ=eiα(x)n^μDμψ.\displaystyle\hat{n}^{\mu}D_{\mu}\psi\to\lim_{\epsilon\to 0}{\rm e}^{i\alpha(x% +\epsilon\hat{n})}\frac{\psi(x+\epsilon\hat{n})-U(x+\epsilon\hat{n},x)\psi(x)}% {\epsilon}={\rm e}^{i\alpha(x)}\hat{n}^{\mu}D_{\mu}\psi\,. (378)

Taylor-expanding UU gives us with U(x,x)=1U(x,x)=1

U(x+ϵn^,x)=1iϵn^μ(eAμ(x))+𝒪(ϵ2).\displaystyle U(x+\epsilon\hat{n},x)=1-i\epsilon\hat{n}^{\mu}(eA_{\mu}(x))+% \mathcal{O}(\epsilon^{2})\,. (379)

Here we had to introduce a field AμA_{\mu} that is the derivative of UU as well as an arbitrary constant ee. It is easy to see that AμA_{\mu} transforms as required and it is no surprise that it will turn into the photon field.

We can now concatenate four comparison operations into a small square

𝒰(x)=U(x,x+ϵn^)U(x+ϵn^,x+ϵn^+ϵm^)U(x+ϵn^+ϵm^,x+ϵm^)U(x+ϵm^,x).\displaystyle\mathcal{U}(x)=U(x,x+\epsilon\hat{n})U(x+\epsilon\hat{n},x+% \epsilon\hat{n}+\epsilon\hat{m})U(x+\epsilon\hat{n}+\epsilon\hat{m},x+\epsilon% \hat{m})U(x+\epsilon\hat{m},x)\,. (380)

It is easy to see that 𝒰(x)\mathcal{U}(x) is invariant under the transformation. Starting from

U(x,y)=exp(ieA(x+y2)(xy)+𝒪((xy)3)),\displaystyle U(x,y)=\exp\Big{(}-ieA\big{(}\frac{x+y}{2}\big{)}\cdot(x-y)+% \mathcal{O}\big{(}(x-y)^{3}\big{)}\Big{)}\,, (381)

we find

𝒰(x)\displaystyle\mathcal{U}(x) =exp[ieϵ(n^A(x+n^ϵ2)m^A(x+n^ϵ+m^ϵ2)+n^A(x+m^ϵ+n^ϵ2)+m^A(x+m^ϵ2))]\displaystyle=\exp\bigg{[}-ie\epsilon\Big{(}-\hat{n}\cdot A\big{(}x+\hat{n}% \tfrac{\epsilon}{2}\big{)}-\hat{m}\cdot A\big{(}x+\hat{n}\epsilon+\hat{m}% \tfrac{\epsilon}{2}\big{)}+\hat{n}\cdot A\big{(}x+\hat{m}\epsilon+\hat{n}% \tfrac{\epsilon}{2}\big{)}+\hat{m}\cdot A\big{(}x+\hat{m}\tfrac{\epsilon}{2}% \big{)}\Big{)}\Bigg{]}
=exp[ieϵ(m^(n^A)n^(m^A))).\displaystyle=\exp\Big{[}-ie\epsilon\big{(}\partial_{\hat{m}}(\hat{n}\cdot A)-% \partial_{\hat{n}}(\hat{m}\cdot A)\big{)}\Big{)}\,. (382)

This proofs that FμνF_{\mu\nu} and any functions that depend on FμνF_{\mu\nu} are invariant. However, AμA_{\mu} itself is not invariant meaning that a mass term like mγAμAμm_{\gamma}\ A_{\mu}A^{\mu} would not be allowed. This is the reason that the photon is massless.

You may now wonder about the ZZ and WW bosons. The same argument still applies and we cannot write down a mass for them. In the Standard Model, their masses are dynamically generated through the Higgs mechanism. Basically, the theory contains a scalar field ϕ\phi whose kinetic term includes a covariant deriviative that couples it dynamically to the WW and ZZ bosons. Uniquely among all particles, this field has a non-zero vev meaning that WW and ZZ get a dynamically generated mass.

6.2 Recipe for evaluations

The following is a rough recipe for evaluating Feynman diagrams. We will shortly discuss each step in an example but it may be convenient to have it all in one place. To calculate an amplitude,

  1. 1.

    draw all the Feynman diagrams.

  2. 2.

    assign momenta to all edges and Lorentz indices to all photon vertices.

  3. 3.

    pick the end of any fermion line and follow the arrow backwards, evaluating as you go.

  4. 4.

    multiply in the polarisation tensors for any external photons and propagators for each internal photon.

  5. 5.

    contract any open index

  6. 6.

    if your diagram has any loops, integrate over the unconstrained momenta. If you have any internal fermion loops, calculate the trace over their gamma matrices.

  7. 7.

    you now have the amplitude \mathcal{M}.

To calculate a cross section,

  1. 8.

    square the amplitude as ||2=×|\mathcal{M}|^{2}=\mathcal{M}^{\dagger}\times\mathcal{M}. Make sure to rename any indices to avoid collisions. To calculate \mathcal{M}^{\dagger}, you can use the fact that (AB)=BA(A\cdot B)^{\dagger}=B^{\dagger}A^{\dagger} and

    u=uγ0γ0=u¯γ0andu¯=[uγ0]=[γ0]u=γ0u,\displaystyle u^{\dagger}=u^{\dagger}\gamma^{0}\gamma^{0}=\bar{u}\gamma^{0}% \qquad\text{and}\qquad\bar{u}^{\dagger}=\big{[}u^{\dagger}\gamma^{0}\big{]}^{% \dagger}=\big{[}\gamma^{0}\big{]}^{\dagger}u=\gamma^{0}u\,, (383)

    and similarly for vv. Further,

    (γμ)=γ0γμγ0.\displaystyle(\gamma^{\mu})^{\dagger}=\gamma^{0}\gamma^{\mu}\gamma^{0}\,. (278)

    As we will see, this just amounts to reversing the spin line.

  2. 9.

    if you calculate unpolarised scattering, sum over final-state and average over initial-state polarisations. For this, the completeness relations (317) and (356) will be helpful

    r=1,2ur(p)u¯r(p)=γp+m,\displaystyle\sum_{r=1,2}u_{r}(p)\bar{u}_{r}(p)=\gamma\cdot p+m\,,
    r=1,2vr(p)v¯r(p)=γpm,\displaystyle\sum_{r=1,2}v_{r}(p)\bar{v}_{r}(p)=\gamma\cdot p-m\,, (317)
    λϵλ,μ(p)ϵλ,ν(p)=ημν.\displaystyle\sum_{\lambda}\epsilon_{\lambda,\mu}(p)\epsilon_{\lambda,\nu}^{*}% (p)=-\eta_{\mu\nu}\,. (356)
  3. 10.

    for fermions, this will result in a trace of γ\gamma matrices (see below). Evaluate this trace using trace identities (274)

    tr(γμ)\displaystyle{\rm tr}(\gamma^{\mu}) =0,\displaystyle=0\,,
    tr(γμ1γμkodd)\displaystyle{\rm tr}(\underbrace{\gamma^{\mu_{1}}\cdots\gamma^{\mu_{k}}}_{% \text{odd}}) =0,\displaystyle=0\,,
    tr(γμγν)\displaystyle{\rm tr}(\gamma^{\mu}\gamma^{\nu}) =4ημν,\displaystyle=4\eta^{\mu\nu}\,,
    tr(γμγνγργσ)\displaystyle{\rm tr}\Big{(}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{% \sigma}\Big{)} =4(ημνηρσημρηνσ+ημσηνρ).\displaystyle=4\Big{(}\eta^{\mu\nu}\eta^{\rho\sigma}-\eta^{\mu\rho}\eta^{\nu% \sigma}+\eta^{\mu\sigma}\eta^{\nu\rho}\Big{)}\,. (274)
  4. 11.

    use (235) or (237) to relate this to the cross section or decay rate

    dσ\displaystyle{\rm d}\sigma =1(2Ea)(2Eb)|v|(n=1fd3pn(2π)32En)(2π)4δ(4)(pa+pbn=1fpn)dΦ2f||2,\displaystyle=\frac{1}{(2E_{a})(2E_{b})|\vec{v}|}\underbrace{\Bigg{(}\prod_{n=% 1}^{f}\frac{{\rm d}^{3}p_{n}}{(2\pi)^{3}2E_{n}}\Bigg{)}(2\pi)^{4}\delta^{(4)}% \Bigg{(}p_{a}+p_{b}-\sum_{n=1}^{f}p_{n}\Bigg{)}}_{{\rm d}\Phi_{2\to f}}\ |% \mathcal{M}|^{2}\,, (235)
    dΓ\displaystyle{\rm d}\Gamma =12M(n=1fd3pn(2π)32En)(2π)4δ(4)(pan=1fpn)dΦ1f||2.\displaystyle=\frac{1}{2M}\underbrace{\Bigg{(}\prod_{n=1}^{f}\frac{{\rm d}^{3}% p_{n}}{(2\pi)^{3}2E_{n}}\Bigg{)}(2\pi)^{4}\delta^{(4)}\Bigg{(}p_{a}-\sum_{n=1}% ^{f}p_{n}\Bigg{)}}_{{\rm d}\Phi_{1\to f}}\ |\mathcal{M}|^{2}\,. (237)
  5. 12.

    integrate over phase space.

6.3 A simple process eeμμee\to\mu\mu

Let us calculate our first real process, eeμμee\to\mu\mu. There is just a single ss-channel diagram contributing so Step 1 and 2 are very simple

=
An electron and a positron coming in (momenta p1 and p2 respective) and meeting in a vertex labelled μ. A photon with momentum p1+p2 connects this to a vertex labelled νfrom where a muon and an anti-muon leave (indicated by a thicker line; momenta p3 and p4)
.
\displaystyle\mathcal{M}=\includegraphics{bmlimages/notes-150.svg}% \bml@image@depth{150}\bmlDescription{An electron and a positron coming in (% momenta p1 and p2 respective) and meeting in a vertex labelled \mu. A photon % with momentum p1+p2 connects this to a vertex labelled \nu from where a muon % and an anti-muon leave (indicated by a thicker line; momenta p3 and p4)}\,.
(384)

We have to apply Step 3 twice, once for the muon and once for the electron. After Step 5, we have

\displaystyle\mathcal{M} =[v¯s2(p2)(ieγμ)us1(p1)]iημν(p1+p2)2+iϵ[u¯s3(p3)(ieγν)vs4(p4)]\displaystyle=\Big{[}\bar{v}_{s_{2}}(p_{2})\big{(}ie\gamma^{\mu}\big{)}u_{s_{1% }}(p_{1})\Big{]}\frac{-i\eta_{\mu\nu}}{(p_{1}+p_{2})^{2}+i\epsilon}\Big{[}\bar% {u}_{s_{3}}(p_{3})\big{(}ie\gamma^{\nu}\big{)}v_{s_{4}}(p_{4})\Big{]} (385)
=ie2(p1+p2)2+iϵ[v¯s2(p2)γμus1(p1)][u¯s3(p3)γμvs4(p4)].\displaystyle=\frac{ie^{2}}{(p_{1}+p_{2})^{2}+i\epsilon}\Big{[}\bar{v}_{s_{2}}% (p_{2})\gamma^{\mu}u_{s_{1}}(p_{1})\Big{]}\Big{[}\bar{u}_{s_{3}}(p_{3})\gamma_% {\mu}v_{s_{4}}(p_{4})\Big{]}\,. (386)

We can now square this object

||2=e4[(p1+p2)2]2[v¯s2(p2)γμus1(p1)u¯s3(p3)γμvs4(p4)][v¯s2(p2)γνus1(p1)u¯s3(p3)γνvs4(p4)].\displaystyle|\mathcal{M}|^{2}=\frac{e^{4}}{\big{[}(p_{1}+p_{2})^{2}\big{]}^{2% }}\Big{[}\bar{v}_{s_{2}}(p_{2})\gamma^{\mu}u_{s_{1}}(p_{1})\ \bar{u}_{s_{3}}(p% _{3})\gamma_{\mu}v_{s_{4}}(p_{4})\Big{]}^{\dagger}\Big{[}\bar{v}_{s_{2}}(p_{2}% )\gamma^{\nu}u_{s_{1}}(p_{1})\ \bar{u}_{s_{3}}(p_{3})\gamma_{\nu}v_{s_{4}}(p_{% 4})\Big{]}\,. (387)

Let us first work on the first bracket [][\cdots]^{\dagger} and use that

[]\displaystyle\Big{[}\cdots\Big{]}^{\dagger} =[us1(p1)][γμ][v¯s2(p2)][vs4(p4)][γμ][u¯s3(p3)]\displaystyle=\big{[}u_{s_{1}}(p_{1})\big{]}^{\dagger}\big{[}\gamma^{\mu}\big{% ]}^{\dagger}\big{[}\bar{v}_{s_{2}}(p_{2})\big{]}^{\dagger}\ \big{[}v_{s_{4}}(p% _{4})\big{]}^{\dagger}\big{[}\gamma_{\mu}\big{]}^{\dagger}\big{[}\bar{u}_{s_{3% }}(p_{3})\big{]}^{\dagger} (388)
=u¯s1(p1)γ0γ0γμγ0γ0vs2(p2)v¯s4(p4)γ0γ0γμγ0γ0us3(p3)\displaystyle=\bar{u}_{s_{1}}(p_{1})\gamma^{0}\ \gamma^{0}\gamma^{\mu}\gamma^{% 0}\ \gamma^{0}v_{s_{2}}(p_{2})\ \bar{v}_{s_{4}}(p_{4})\gamma^{0}\ \gamma^{0}% \gamma_{\mu}\gamma^{0}\ \gamma^{0}u_{s_{3}}(p_{3}) (389)
=u¯s1(p1)γμvs2(p2)v¯s4(p4)γμus3(p3).\displaystyle=\bar{u}_{s_{1}}(p_{1})\gamma^{\mu}v_{s_{2}}(p_{2})\ \bar{v}_{s_{% 4}}(p_{4})\gamma_{\mu}u_{s_{3}}(p_{3})\,. (390)

This means we now have after re-bracketing things

||2=e4[(p1+p2)2]2[u¯s1(p1)γμvs2(p2)v¯s2(p2)γνus1(p1)][v¯s4(p4)γμus3(p3)u¯s3(p3)γνvs4(p4)].\displaystyle|\mathcal{M}|^{2}=\frac{e^{4}}{\big{[}(p_{1}+p_{2})^{2}\big{]}^{2% }}\Big{[}\bar{u}_{s_{1}}(p_{1})\gamma^{\mu}v_{s_{2}}(p_{2})\bar{v}_{s_{2}}(p_{% 2})\gamma^{\nu}u_{s_{1}}(p_{1})\Big{]}\Big{[}\bar{v}_{s_{4}}(p_{4})\gamma_{\mu% }u_{s_{3}}(p_{3})\bar{u}_{s_{3}}(p_{3})\gamma_{\nu}v_{s_{4}}(p_{4})\Big{]}\,. (391)

Let us look at one of those, e.g. the first one where we have vs2v¯s2v_{s_{2}}\bar{v}_{s_{2}}. If we sum over the polarisation states, i.e. calculate v1v¯1+v2v¯2v_{1}\bar{v}_{1}+v_{2}\bar{v}_{2}, we can write this using the completeness relation as γp2m\gamma\cdot p_{2}-m.

s1,s2[]=s1u¯s1(p1)γμ(γp2m)γνus1(p1)\displaystyle\sum_{s_{1},s_{2}}\Big{[}\cdots\Big{]}=\sum_{s_{1}}\bar{u}_{s_{1}% }(p_{1})\gamma^{\mu}\big{(}\gamma\cdot p_{2}-m\big{)}\gamma^{\nu}u_{s_{1}}(p_{% 1}) (392)

To make use of this also for s1s_{1}, remember that the bracket is a number under spinor, i.e.

u¯(p1)u(p1)=tr[u¯(p1)u(p1)]=tr[u(p1)u¯(p1)]=tr[(γp1+m)].\displaystyle\bar{u}(p_{1})\cdots u(p_{1})={\rm tr}\Big{[}\bar{u}(p_{1})\cdots u% (p_{1})\Big{]}={\rm tr}\Big{[}u(p_{1})\bar{u}(p_{1})\cdots\Big{]}={\rm tr}\Big% {[}\big{(}\gamma\cdot p_{1}+m\big{)}\cdots\Big{]}\,. (393)

This is sometimes referred to the Casimir trick and it is essential to calculating matrix elements with traces. Therefore,

s1,s2[]=tr[(γp1+m)γμ(γp2m)γν].\displaystyle\sum_{s_{1},s_{2}}\Big{[}\cdots\Big{]}={\rm tr}\Big{[}\big{(}% \gamma\cdot p_{1}+m\big{)}\gamma^{\mu}\big{(}\gamma\cdot p_{2}-m\big{)}\gamma^% {\nu}\Big{]}\,. (394)

We now can expand and calculate this trace

s1,s2[]\displaystyle\sum_{s_{1},s_{2}}\Big{[}\cdots\Big{]} =p1,ρp2,σtr[γργμγσγν]mtr[γp1γμγν]+mtr[γμγp2γν]m2tr[γμγν]\displaystyle=p_{1,\rho}p_{2,\sigma}{\rm tr}\Big{[}\gamma^{\rho}\gamma^{\mu}% \gamma^{\sigma}\gamma^{\nu}\Big{]}-m\ {\rm tr}\Big{[}\gamma\cdot p_{1}\ \gamma% ^{\mu}\ \gamma^{\nu}\Big{]}+m\ {\rm tr}\Big{[}\gamma^{\mu}\ \gamma\cdot p_{2}% \ \gamma^{\nu}\Big{]}-m^{2}{\rm tr}\Big{[}\gamma^{\mu}\gamma^{\nu}\Big{]} (395)
=p1,ρp2,σ4(ηρμησνηρσημν+ηρνημσ)m24ημν\displaystyle=p_{1,\rho}p_{2,\sigma}4\Big{(}\eta^{\rho\mu}\eta^{\sigma\nu}-% \eta^{\rho\sigma}\eta^{\mu\nu}+\eta^{\rho\nu}\eta^{\mu\sigma}\Big{)}-m^{2}4% \eta^{\mu\nu}
=4p1μp2ν+4p1νp2μ4(p1p2+m2)ημν\displaystyle=4p_{1}^{\mu}p_{2}^{\nu}+4p_{1}^{\nu}p_{2}^{\mu}-4(p_{1}\cdot p_{% 2}+m^{2})\eta^{\mu\nu} (396)

Doing the same for the other bracket, we have

s3,s4[]\displaystyle\sum_{s_{3},s_{4}}\Big{[}\cdots\Big{]} =4p3,μp4,ν+4p3,νp4,μ4(p3p4+M2)ημν.\displaystyle=4p_{3,\mu}p_{4,\nu}+4p_{3,\nu}p_{4,\mu}-4(p_{3}\cdot p_{4}+M^{2}% )\eta_{\mu\nu}\,. (397)

and with s=(p1+p2)2s=(p_{1}+p_{2})^{2} and t=(p1p3)2t=(p_{1}-p_{3})^{2}

si||2\displaystyle\sum_{s_{i}}|\mathcal{M}|^{2} =16q4[(p1+p2)2]2[p1μp2ν+p1νp2μ(p1p2+m2)ημν][p3,μp4,ν+p3,νp4,μ(p3p4+M2)ημν]\displaystyle=\frac{16q^{4}}{\big{[}(p_{1}+p_{2})^{2}\big{]}^{2}}\Big{[}p_{1}^% {\mu}p_{2}^{\nu}+p_{1}^{\nu}p_{2}^{\mu}-(p_{1}\cdot p_{2}+m^{2})\eta^{\mu\nu}% \Big{]}\Big{[}p_{3,\mu}p_{4,\nu}+p_{3,\nu}p_{4,\mu}-(p_{3}\cdot p_{4}+M^{2})% \eta_{\mu\nu}\Big{]} (398)
=8e4s2(2m4+4m2(M2t)+2M44M2t+s2+2st+2t2),\displaystyle=\frac{8e^{4}}{s^{2}}\Big{(}2m^{4}+4m^{2}\left(M^{2}-t\right)+2M^% {4}-4M^{2}t+s^{2}+2st+2t^{2}\Big{)}\,, (399)

where we have used that ημνημν=4\eta^{\mu\nu}\ \eta_{\mu\nu}=4.

To simplify the discussion of the cross section, let us set m=0m=0 (high energy limit) and write tt in terms of cosθ\cos\theta (cf. (258b))

t=(p1p3)2=s2(1+β22+βcosθ)withβ=14M2s\displaystyle t=(p_{1}-p_{3})^{2}=\frac{s}{2}\Big{(}-\frac{1+\beta^{2}}{2}+% \beta\ \cos\theta\Big{)}\quad\text{with}\quad\beta=\sqrt{1-\frac{4M^{2}}{s}} (400)

the velocity of the muon. Now the matrix element squared is

si||2\displaystyle\sum_{s_{i}}|\mathcal{M}|^{2} =4q4(2(1cos2θ)β2).\displaystyle=4q^{4}\Big{(}2-(1-\cos^{2}\theta)\beta^{2}\Big{)}\,. (401)

Since we have to average over 2×22\times 2 incoming spins, the four cancels. The cross section is

dσdΩ=α24sβ(2(1cos2θ)β2).\displaystyle\frac{{\rm d}\sigma}{{\rm d}\Omega}=\frac{\alpha^{2}}{4s}\beta% \Big{(}2-(1-\cos^{2}\theta)\beta^{2}\Big{)}\,. (402)

In the high-energy limit, M=0M=0 or β=1\beta=1, this is

dσdΩ=α24s(1+cos2θ).\displaystyle\frac{{\rm d}\sigma}{{\rm d}\Omega}=\frac{\alpha^{2}}{4s}(1+\cos^% {2}\theta)\,. (403)

At this point, there are a number of exercises you can do. In order of increasing complexity.

Suggested Exercise

Calculate dσ/dt{\rm d}\sigma/{\rm d}t for eμeμe\mu\to e\mu scattering. The amplitude squared is

||2=8e4t2(2m4+2M4+4m2(M2s)4M2s+2s2+2st+t2),\displaystyle\sum|\mathcal{M}|^{2}=\frac{8e^{4}}{t^{2}}\Big{(}2m^{4}+2M^{4}+4m% ^{2}(M^{2}-s)-4M^{2}s+2s^{2}+2st+t^{2}\Big{)}\,, (404)

and the cross section is

dσdt=4πα2(M2+m2)2su+t2/2t2λ,\displaystyle\frac{{\rm d}\sigma}{{\rm d}t}=4\pi\alpha^{2}\frac{(M^{2}+m^{2})^% {2}-su+t^{2}/2}{t^{2}\lambda}\,, (405)

with λ=m42m2M2+M42m2s2M2s+s2\lambda=m^{4}-2m^{2}M^{2}+M^{4}-2m^{2}s-2M^{2}s+s^{2}.

Suggested Exercise

Calculate the cross section for eeγγee\to\gamma\gamma. The amplitude can be written down as

=v¯(p2)(ieγμ)iγ(p1p4)m(ieγν)u(p1)ϵμ(p3)ϵν(p4)+v¯(p2)(ieγν)iγ(p1p3)m(ieγμ)u(p1)ϵμ(p3)ϵν(p4).\displaystyle\begin{split}\mathcal{M}&=\bar{v}(p_{2})(-ie\gamma^{\mu})\frac{i}% {\gamma\cdot(p_{1}-p_{4})-m}(-ie\gamma^{\nu})u(p_{1})\ \epsilon_{\mu}^{*}(p_{3% })\epsilon_{\nu}^{*}(p_{4})\\ &+\bar{v}(p_{2})(-ie\gamma^{\nu})\frac{i}{\gamma\cdot(p_{1}-p_{3})-m}(-ie% \gamma^{\mu})u(p_{1})\ \epsilon_{\mu}^{*}(p_{3})\epsilon_{\nu}^{*}(p_{4})\,.% \end{split} (406)
Suggested Exercise

Calculate the cross section dσ/dt{\rm d}\sigma/{\rm d}t for e+ee+ee^{+}e^{-}\to e^{+}e^{-}. We find

||2=8e4(8m48m2s+2s2+2st+t2t2+8m4+s28m2t+2st+2t2s2+2(s+t)28m4st).\displaystyle\sum|\mathcal{M}|^{2}=8e^{4}\Bigg{(}\frac{8m^{4}-8m^{2}s+2s^{2}+2% st+t^{2}}{t^{2}}+\frac{8m^{4}+s^{2}-8m^{2}t+2st+2t^{2}}{s^{2}}+\frac{2(s+t)^{2% }-8m^{4}}{st}\Bigg{)}\,. (407)
Suggested Exercise

Write down, but do not calculate, the amplitudes at 𝒪(e4)\mathcal{O}(e^{4}) for eeμμee\to\mu\mu.