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Abstract

Quantum Field Theory is the unification of special relativity with quantum mechanics. First
attempts at this failed because physicists tried to keep the number of particles constant. For energies
much smaller than the rest mass, i.e. E ≪ mc2, this is a reasonable approximation. However, once
we thinking about high-energy processes we can create new particles. Once this idea was accepted,
the development of Quantum Field Theory was still somewhat rocky. This changed when in 1948
Julian Schwinger calculated the anomalous magnetic moment of the electron. The following decades
are followed are the story of the success of Quantum Field Theory. The Quantum Field Theory
prediction of the anomalous magnetic moment of the electron is to this day the most precise test of
a theory in all of science:

ath
e = 0.001 159 652 181 643(764)

aexp
e = 0.001 159 652 180 59(13) .

I will not be able to show you how this is calculated. But I hope that, over the coming weeks and
months, I can give you an idea of the underpinnings of this calculation.

We will begin by studying a relativistic classical scalar field with the Klein-Gordon equation.
Next, we will quantise this field, first without interactions and then with using perturbation theory.
In the end, we will study decay and scattering as well as higher-order corrections.

For an up-to-date copy of these notes, see https://math425.yannickulrich.com/notes. Please
report any mistakes at https://gitlab.com/yannickulrich/qft/-/issues.
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1 Classical scalar field

In quantum mechanics (QM) we only considered non-relativistic single particles. By then special relativity
was already well-known and many physicists tried to find a combined theory of special relativity and QM,
similar to how we are trying to find a combined theory with general relativity today. The first attempt at
this was the Klein-Gordon (KG) equation which, in essence, was very similar to the Schrödinger equation.
Recall how we identify operators in QM

p→ −iℏ∂x and E → iℏ∂t . (1)

The Schrödinger equation is just the definition of the non-relativistic energy E = T + V

E = T + V =
p2

2m
+ V ,

iℏ∂tΨ =
[
− ℏ2

2m
∂2x + V

]
Ψ .

(2)

It is now natural to try and extend this to the relativistic case E2 − c2p2 = c4m2 (which of course for
p = 0 is just E = mc2)

ℏ2
(
− 1

c2
∂2t + ∂2x

)
Ψ = m2c2Ψ . (3)

This is the KG equation. Unfortunately, this equation is, as it stands, inconsistent and Schrödinger
himself discarded it immediately, choosing to instead expand the relativistic mass-energy relation which
lead him to (2).

The solution to this problem will be that we need to consider the number of particles free rather than
fixed to one. Recall how in perturbation theory we had to sum over all possible states rather than just
the lowest energy one. Here we have much the same.

Before we can do this, we need to briefly revisit some aspects of classical physics. We will spend the
rest of this chapter reviewing relativity and Lagrangian mechanics and classical field theory.

1.1 Relativity

At its heart, physics is the study of the symmetries of nature and their consequences. By studying how
systems change or more importantly do not change under transformation, we can identify important
properties of the system (cf. Noether theorem). Arguably one of the most important symmetries there
is, is Lorentz symmetry, i.e. invariance under spacetime rotations in special relativity. These consists of
rotation in 3D space and boosts. The following is merely a brief summary of what is required for this
course and should not be viewed as complete.

1.1.1 Rotation

A rotation in 3D can be expressed using a 3× 3 matrix R such that

x⃗→ x⃗ ′ = Rx⃗ ,

xi → x′i =

3∑
j=1

Rijxj = Rijxj .
(4)

Here we have started using Einstein sum conventions where a sum is implicit over indices that appear
exactly twice. Since a rotation of the entire system is supposed to not change the lengths of vectors or
the angles between them, let us consider what happens to a scalar product between two vectors x⃗ and y⃗

x⃗ · y⃗ =

3∑
i=1

xiyi = xiyi → x′iy
′
i = RijxjRikxk . (5)

The only way for this to hold is if

RijRik = Rji(R
T )ik = δjk or in other words RRT = 1 , (6)
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with the Kronecker delta δjk. This means that R has to be an orthogonal matrix. Since we usually want
to disallow reflections, we also require detR = 1 to arrive at the symmetry group

SO(3) =
{
R
∣∣∣ RRT = 1 and detR = 1

}
. (7)

1.1.2 Minkowski space

What is the equivalent of distances and rotations in special-relativity, i.e. what do we require to remain
invariant under transformation? Measurements tell us that the ‘distance’ in spacetime is defined as

s2 = c2t2 − x⃗2 , (8)

which remains invariant compared to the previous s2 = x⃗2. This is very similar to the rotations except
for the extra sign. In 3D we have worked in Euclidean space while we now need to work in Minkowskian
space. Similarly, the metric s is now called the Minkowski metric1. For simplicity, let us collect the time
component into the vector x to write the vector

xµ = (x0, x1, x2, x3) = (ct, x⃗) , (9)

which we need to distinguish from the covector which has lower indices

xµ = (x0,−x1,−x2,−x3) = (ct,−x⃗) , (10)

to properly account for the metric. In sum convention, we may only contract upper with lower indices,
i.e.

xµxµ = c2t2 − x⃗2 = s2 , (11)

is valid while xµyµ is not. It would therefore be helpful to have a way to raise or lower indices which is
done using the metric itself

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (12)

Signs of the metric
Note that there are two competing conventions for the signs in η. In this lecture (and the broader
particle physics community) we will use the ‘mostly minus’ conventions, sometimes called west coast
metric. Alternatively, people use a metric which has the minus sign in the time component which is
more common in string theory and cosmology. This is often referred to as the ‘mostly plus’ or east coast
convention. The west coast convention has the nice property that the momentum of a massive particle
squares to its mass, i.e. pµpµ = m2 rather than pµpµ = −m2. When reading other resources, please make
sure you understand the metric the author uses to avoid making sign mistakes!

η takes a role not dissimilar from the Kronecker delta in Euclidean space. We can now write

xµ = ηµνx
ν and xµ = ηµνxν , (13)

where we have defined the new ηµν . Luckily, its matrix representation is the same since

xµ = ηµνηνρx
ρ and therefore ηµνηνρ = δµρ . (14)

1Formally, the Minkowski metric is not a metric in the mathematical sense because s2 can be negative or zero without
x = 0.
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Exercise: What is ηµνη
νµ?

Please note that for a general tensor, i.e. an object with multiple indices, the order of indices matters.
You can easily convince yourself that it does not for the Kronecker delta δµρ but you should be careful.
Raising and lowering indices works also for tensors, e.g.

wµν = ηνρwµρ = ηµσηνρwσρ . (15)

It is very important to remember that wµν , wµρ, wσρ and even w ρ
µ are all different objects!

Another important object to consider is the derivative operator which also exists as a vector and a
covector

∂µ =
∂

∂xµ
=
(1
c
∂t,−∇⃗

)
, (16)

∂µ =
∂

∂xµ
=
(1
c
∂t,+∇⃗

)
. (17)

The derivative of x itself works as expected

∂µx
ν = δ νµ and ∂µxν = δµν . (18)

One can easily show that the momentum

pµ =
(
E/c, p⃗

)
(19)

is a vector which allows the identification (1).

1.1.3 Lorentz transformation

We now have the tools to actually study Lorentz transformations. We begin by defining

� the scalar product in Minkowski space which works the same for vectors and covectors

x · y = xµyµ = xµy
µ = ηµνx

µyν = ηµνxµyν . (20)

� the Lorentz transformation as a linear transformation

xµ → (x′)µ = Λµνx
ν . (21)

Exercise: Find an explicit form of Λ.

We want this transformation to preserve scalar products, i.e. x′ · y′ = x · y

x′ · y′ = ηµν(x
′)µ(y′)ν = ηµνΛ

µ
ρx
ρΛνσy

σ !
= ησρx

ρyσ . (22)

This allows us to specify the full Lorentz group

O(1, 3) =
{
Λ
∣∣∣ ηµνΛµρΛνσ = ησρ

}
. (23)

This relation is very similar to the orthogonal group O(3) and hence has a similar name. We use the
arguments 1, 3 to indicate that there is one time dimension and three spacial dimensions that have
opposite signs. Similarly to how we wanted rotations to not include reflections, we can define subgroups

� orthochronous O+(1, 3) which preserves the direction of time by requiring that Λ0
0 ≥ 1.

� proper SO(1, 3) which preserves orientation by requiring that detΛ = +1.
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� improper which flips orientation, i.e. detΛ = −1

� non-orthochronous O−(1, 3) which flips the direction of time by requiring that Λ0
0 ≤ 1.

When we talk about the Lorentz group, we often refer to the proper orthochronous group SO+(1, 3) .

Exercise: Proof that SO+(1, 3) is a group.

Exercise: Proof that p2 = p · p = pµpνηµν is invariant under Lorentz transformation. What does
this mean for the mass-energy relation E2/c− p⃗2 = m2c2?

When we combine the Lorentz group with invariance under shifts, we obtain the largest group of
spacetime symmetry, the Poincaré group.

Since the Lorentz group is connect, we can obtain every element of SO+(1, 3) by concatenating
infinitesimal Lorentz transforms starting from the identity transform δ, i.e.

Λµν = δµν + ωµν +O(ω2) . (24)

By substituting this into the condition for the Lorentz group (23), we find

ησρ = ηµνΛ
µ
ρΛ

ν
σ = ηµν

(
δµρ + ωµρ

)(
δνσ + ωνσ

)
+O(ω2)

= ηρσ + ηρνω
ν
σ + ηµσω

µ
ρ +O(ω2) = ηρσ + ωρσ + ωσρ +O(ω2) .

(25)

In other words, ω is antisymmetric

ωρσ = −ωσρ , (26)

which is why it is so important to keep the order of indices correct.
Aside from (21), it is also useful to know how derivatives transform

∂

∂xµ
=
∂(x′)ν

∂xµ
∂

∂(x′)ν
= Λνµ

∂

∂(x′)ν
. (27)

1.1.4 Transformation of the KG field

If we want SO+(1, 3) to be a symmetry of nature, our theories need to invariant under transformation.
To ensure this, we need to study how for example the solution Ψ(x) of the KG equation (3) transforms.
Ψ(x) maps every point x in spacetime to a (complex) number Ψ(x). If x is for example the point where
Ψ(x) is maximal, this property needs to be retained even after transformation, i.e.

x→ x′ = Λx ,

Ψ(x)→ Ψ′(x′) = Ψ′(Λx)
!
= Ψ(x) .

(28)

The way to ensure this, is to require

Ψ(x)→ Ψ′(x) = Ψ(Λ−1x) . (29)

For the KG equation we need

ηµν∂µ∂νΨ(x)→ ηµν(Λ−1)ρµ(Λ
−1)σν︸ ︷︷ ︸

ηρσ

(∂ρ∂σΨ)(Λ−1x) = (ηρσ∂ρ∂σΨ)(Λ−1x) , (30)

where we have used again the defining properties of Λ. With this it is obvious that the KG equation (3)
(now rewritten in more compact notation)

(ℏ2∂µ∂µ +m2c2)Ψ = 0 (31)

is invariant

(ℏ2∂µ∂µ +m2c2)Ψ(x)→ (ℏ2∂µ∂µ +m2c2)Ψ(Λ−1x) (32)
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1.2 A brief digression on units

In the above discussion we often had to write ℏ and c. To avoid doing this, it is common to choose a unit
system where ℏ = c = 1 and we only have a single unit (such as GeV). This is perfectly permissible as we
will always know how to convert back to SI units by multiplying with the correct powers of ℏ and c. With
the 2019 revision of the SI system, both c and ℏ have definite values without uncertainties as they are
used to define the meter and kilogram respectively. A helpful value to remember is (ℏc) = 197.3MeV · fm.

Exercise: Convert the following values back to SI units:

� the total cross section for pp collisions at the LHC is σ ≈ 250GeV−2. How much is this in fb2?

� the muon lifetime is τ ≈ 3.3× 1018 GeV−1. How much is this in µs?

� the electron mass is m ≈ 0.511MeV. How much is this in kg?

1.3 Lagrangian mechanics

Let us briefly review a classical system with n degrees of freedom such as a collection of n/3 particles
that can all move independently of each other. This system is completely described by n generalised
coordinates q1, ..., qn and n generalised velocities q̇1, ..., q̇n. To find these, we need the Lagrangian L. For
a system of particles, this is

L({qi}, {q̇i}, t) = T − V =
1

2

n∑
k=1

miq̇
2
i − V ({qi}, {q̇i}) . (33)

To derive the equations of motions (EoMs) for this system, we define the action S functional

S[{qi(t)}] =
∫ t1

t0

dt L({qi}, {q̇i}, t) (34)

and use the variational principle, i.e. we require the action is extremal2

δS = 0 . (35)

From this you can easily derive the Euler-Lagrange equation

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (36)

Derivation of the Euler-Lagrange for n = 1
In the n = 1 case we have only one q so that the action only depends on the function q(t). Fixing the
boundary conditions q(t0) = q0 and q(t1) = q1, we vary the path by a small ϵ ω(t) with ω(t0) = ω(t1) = 0.
Then,

d

dϵ
S[q + ϵ ω] =

∫ t1

t0

dt
d

dϵ
L
(
q(t) + ϵ ω(t), q̇(t) + ϵ ω̇(t), t

)
=

∫ t1

t0

dt

[
ω(t)

∂L

∂q

(
q(t) + ϵ ω(t), q̇(t) + ϵ ω̇(t), t

)
+ ω̇(t)

∂L

∂q̇

(
q(t) + ϵ ω(t), q̇(t) + ϵ ω̇(t), t

)]
,

(37)

2This is sometimes referred to as the principle of least action. However, the action does not need to minimised (even if
it often is) as long as it is extremal

7



since t does not depend on ϵ. For ϵ = 0, we have an extremal value

dS[q]

dϵ
=

∫ t1

t0

dt

[
ω(t)

∂L

∂q

(
q(t), q̇(t), t

)
+ ω̇(t)

∂L

∂q̇

(
q(t), q̇(t), t

)]
. (38)

Applying integration-by-parts on the second term with ω(t0) = ω(t1) = 0 such hat the boundary condi-
tions vanish

dS[q]

dϵ
=

∫ t1

t0

dt ω(t)

[
∂L

∂q

(
q(t), q̇(t), t

)
− d

dt

∂L

∂q̇

(
q(t), q̇(t), t

)]
. (39)

Since ω is an arbitrary smooth function, the fundamental lemma of the calculus of variations requires
that the bracket vanishes.

Because of its prevalence in mechanics, we define the conjugate momentum to qi

πi =
∂L

∂q̇i
(40)

Next, we can define the Hamiltonian

H =

n∑
j=1

q̇jπj − L({qi}, {q̇i}, t) , (41)

which in the case of (33) is just the total energy of the system

H =

n∑
j=1

q̇j
∂L

∂q̇i︸︷︷︸
q̇jmj

−L = T + V . (42)

We can now wonder when energy is conversed by calculating the total derivative of H w.r.t. t

dH

dt
= q̈j

∂L

∂q̇j
+ q̇j

d

dt

∂L

∂q̇j︸ ︷︷ ︸
d(qjπj)/dt

− ∂L
∂qj

q̇j −
∂L

∂q̇j
q̈j −

∂L

∂t︸ ︷︷ ︸
−dL/dt

, (43)

where we have left the sum over j implicit. Using (36), we can cancel the remaining terms and are left
with

dH

dt
= −∂L

∂t
. (44)

In other words, if the Lagrangian L does not explicitly depend on t (for example through a time-dependent
potential V (t)), energy is conserved. This is the first example of what is often called a Noether current or
Noether charge, that is a conserved quantity that arises because the Lagrangian has a certain symmetry
such as time-invariance.

Noether Theorem
In 1918, the German mathematician Emmy Noether proved that if the Lagrangian L is invariant under
small perturbations of the time variable and the coordinates qi, there exists a conserved quantity for each
of the n coordinates. To quantify this, let T be the generator of time evolution and Qi the generator of
the symmetry

t→ t+ δt = t+ ϵT , (45)

qi → qi + δqi = qi + ϵQi . (46)
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If L is invariant under the this transformation,

O = H T − πiQi (47)

is conserved. Examples include

� T = 1, Qi = 0: energy is conserved if the potential is not time-dependent.

� T = 0, Qi = 1: linear momentum is conserved if the potential is shift-invariant.

� T = 0, for each particle r Q⃗r = n⃗× q⃗r with some vector n⃗: angular momentum along the axis n⃗ is
conserved if the Lagrangian is spherical symmetric.

� If the L is invariant under Lorentz boost, the centre-of-mass system moves with constant velocity.

Additionally to Lagrangian mechanics, sometimes it is helpful to consider the Hamiltonian EoMs

q̇j =
∂H

∂πj
and π̇j = −

∂H

∂qj
. (48)

Exercise: Derive these using the Euler-Lagrange equation.

1.4 Classical field theory

Before we can study quantum field theorys (QFTs), let us review classical field theories. A classical field
ϕ(x⃗, t) is a function that can take a value for each point in space and time. From a Lagrangian point
of view, this means that we one degree of freedom for each point, requiring us to use integrals rather
than finite sums. Since we also want to consider relativity, we further want to avoid talking about space
differently from time. Therefore, the Lagrangian functional L is now less useful and we instead use the
Lagrangian density L which confusingly is also often called Lagrangian. The generalised coordinate now
becomes the field ϕ(x) and the generalised velocity the derivative of the field ∂µϕ. The action functional
is still defined the same way

S[ϕ] =

∫
dt L[ϕ] =

∫
dt

∫
d3x L[ϕ, ∂µϕ] =

∫
d4x L[ϕ, ∂µϕ] . (49)

Similarly to the n = 1 case above, we can derive the Euler-Lagrange equation by requiring δS = 0

∂

∂xµ

∂L
∂(∂µϕ)

− ∂L
∂ϕ

=
∂

∂xµ
πµ −

∂L
∂ϕ

= 0 . (50)

where we have once again defined the conjugate momentum π.

Exercise: Do this by adding a small variation ϕ→ ϕ+δϕ and use Gauss’s law to remove the surface
terms.

Now let us consider the KG as defining a field ϕ instead of a wavefunction Ψ and derive the EoM (31).
We first require the Lagrangian L. While we could write down a field theory that depends on ϕ and ∂µϕ
in any way we like, we usually want L to be polynomial in the fields and derivatives. There are plenty of
examples where this is not the case though (such as the Sine-Gordon theory or Higgs Effective Theory).
We do require L to be a Lorentz scalar though, meaning that it cannot have open indices, and that L
has units of GeV4 so that the action S is dimensionless. The first conditions implies that L can only be
a function of (∂µϕ)(∂

µϕ) as there are no other vectors to contract with. It turns out that

L =
1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2 . (51)
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Note that the normalisation of 1/2 in front of the kinetic term does not matter classically as it does not
impact the Euler-Lagrange equations. This changes once we start studying quantum fields so we will
keep it already canonically normalised now. Let us that this reduces to the KG equation by computing

∂L
∂(∂µϕ)

=
1

2

∂

∂(∂µϕ)

[
ηαβ(∂

αϕ)(∂βϕ)
]
=

1

2
ηαβ

[
(∂αϕ)δβµ + δαµ(∂

βϕ)
]
= ∂µϕ . (52)

Therefore, we find for (50)

∂

∂xµ
∂µϕ−

1

2

∂(−m2ϕ2)

∂ϕ
= (∂µ∂µ +m2)ϕ = 0 , (53)

which is just (31).
For the Hamiltonian formulation, we need the conjugate momentum which is written through the

time derivative

π(x) =
∂L
∂ϕ̇

= ϕ̇(x) , (54)

which, like ϕ itself, is a scalar field in that it assigns a scalar value to every point in spacetime.
When we considered the case where n is finite, our next subject was to show that total energy is

conserved. We can do something very similar here by defining the Hamiltonian density H

H = ϕ̇π − L =
1

2
π2 +

1

2
(∇ϕ)2 + 1

2
m2ϕ2 . (55)

but it is actually helpful to think broader. Once we start considering relativity, energy and momentum
become frame-dependent and it would be nice to have a covariant description that works with four-vectors
rather than focussing on energy and momentum separately. Such an object is the energy-momentum
tensor

Tµν = (∂µϕ)
∂L

∂(∂νϕ)
− Lηµν , (56)

which considers energy and momentum densities but also their fluxes as well as pressure and stress. Tµν

is a symmetric tensor which is trivial to see in our specific example,

Tµν = (∂µϕ)(∂νϕ)− 1

2
(∂σϕ)(∂ρϕ)η

ρσηµν +
1

2
m2ϕ2ηµν

= (ηρµησν − 1

2
ηρσηµν)(∂σϕ)(∂ρϕ) +

1

2
m2ϕ2ηµν .

(57)

This is very similar to H and in fact T 00 = H is the energy density.
Since we have four translation symmetries (one time and three spatial ones), we expect four conserved

Noether currents

∂νT
µν = (∂ν∂

µϕ)
∂L

∂(∂νϕ)
+ (∂µϕ)

(
∂ν

∂L
∂(∂νϕ)

)
−

(
∂L
∂ϕ

∂νϕ+
∂L

∂(∂ρϕ)
∂ν(∂ρϕ)

)
︸ ︷︷ ︸

∂νL

ηµν

= (∂ν∂
µϕ)

∂L
∂(∂νϕ)

+ (∂µϕ)

(
∂ν

∂L
∂(∂νϕ)

)
−

(
∂σ

∂L
∂(∂σϕ)

∂νϕ+
∂L

∂(∂ρϕ)
∂ν(∂ρϕ)

)
ηµν = 0 .

(58)

Here we have used the chain rule to expand ∂νL and (50) for the first term in the ηµν bracket. We have
now shown that the energy-momentum tensor is a conserved quantity in a more differential sense.

Let us pause for a moment to understand what this means by considering the µ = 0 case, i.e. jν = T 0ν

for which we still have the same conservation law

0 = ∂νj
ν =

∂j0

∂t
+ ∇⃗ · j⃗ . (59)
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By integrating this over a small region of space V , we find using Gauss’s divergence theorem for the
second term

∂

∂t

∫
V

d3x j0 = −
∮
∂V

dS⃗ · j⃗ . (60)

Since we have already identified j0 as the energy density, this implies that the change in energy in the
volume is equal to the flux of energy out of this volume. We will often encounter conservation laws like
this, from energy or momentum like here to probability densities in wavefunctions or electric charge in
electrodynamics.

Before concluding this chapter, let us derive the general solution of the KG equation. Since this is a
wave equation, we begin by making an ansatz in terms of plane wave solutions

ϕ(x) = Ae−ik·x +Be+ik·x , (61)

where kµ is a four vector indicating the direction of travel of our plane wave. Since we have considered
only the real KG where ϕ = ϕ∗, we also need a real solution, i.e. B = A∗. We can constrain k by
substituting the ansatz into the KG equation

∂2ϕ+m2ϕ = −k2ϕ+m2ϕ = 0 . (62)

Therefore, k2 = m2 which means that the momentum of the plane wave needs to be on its so-called
mass-shell. Of course, the general solution is a linear combination of plane waves

ϕ(x) =

∫
d3k

(2π)3
1√
2Ek⃗

[
ak⃗e

−ik·x + a∗
k⃗
eik·x

]
(63)

where k2 = (k0)2 − k⃗2 = E2
k⃗
− k⃗2 = m2. The factor 1/

√
2E does not really matter at this point but it

will become convenient later.

Exercise: Repeat the above discussion for the complex KG field where ϕ and ϕ∗ are independent
degrees of freedom. Start with the Lagrangian

L = (∂µϕ)(∂
µϕ∗)−m2ϕϕ∗ . (64)

In a QFT context, ϕ∗ would be the antiparticle to ϕ’s particle.
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2 Free quantised scalar field

We are now almost ready to quantise the scalar field ϕ, that is, find a QFT that follows the KG field as
specified by the Lagrangian (51). In this section we will consider this field to be a free field, i.e. one that
has no interactions, not even with itself. This is not a very realistic description of nature but it is a very
important first step. Our description of realistic interacting fields will largely be based on free fields and
we will consider the interaction as a small perturbation.

Our discussion is analogous to going from a finite-dimensional Lagrangian problem, where we had n
degrees of freedom that each took a numeric value, to a classical field theory, where we assigned each
point in spacetime a value ϕ(x). When describing such a system using QM, we defined operators for
the position and momentum of each of these particles. Similarly, a quantum field is assigns an operator
to every point in spacetime. Before we can actually write down these fields we need to do a bit more
revising.

2.1 Heisenberg and Schrödinger pictures

Most discussions of QM describe the wavefunction as dynamic and time dependent and the operators act-
ing on them as static. This is called the Schrödinger picture which describes wavefunctions as manifestly
time dependent through the Schrödinger equation (2)

i
∂

∂t
ΨS(x, t) =

[
− 1

2m

∂2

∂x2
+ V

]
︸ ︷︷ ︸

ĤS

ΨS(x, t) . (2)

The Hamiton operator ĤS itself does not depend on time.3 Starting from some initial state |ΨS(0)⟩, the
time evolution of the state is described by

|ΨS(t)⟩ = Û(t)|ΨS(0)⟩ . (65)

The operator Û(t) fulfils the differential equation

i
∂Û

∂t
= ĤSÛ . (66)

Please keep in mind that this is a differential equation for an operator rather than a function. To ensure
that ⟨Ψ|Ψ⟩ remains unchanged, we need the operator Û to be unitary, i.e. Û−1 = Û†.

This picture is not ideal to derive a QFT in because the language we have developed for field theories
explicitly talks about time dependence. Instead, we will use the Heisenberg picture where operators
depend on time while states do not. To transform between the two pictures, we will use a unitary
operator. The state of our system as it was at t = 0 obviously does not depend on time which makes it
our new state vector

|ΨH⟩ = Û−1(t)|ΨS(t)⟩ = Û†(t)|ΨS(t)⟩ = |ΨS(0)⟩ . (67)

To make use of this new picture, we also need to consider how an arbitrary operator ÔS transforms. It
is not difficult to see that

ÔH(t) = Û†(t)ÔSÛ(t) (68)

leaves observables invariant. Crucially for what we are about to attempt, this transformation also leaves
the commutation relation between q̂ and p̂ invariant

[q̂H(t), p̂H(t)] = U†(t)[q̂S , p̂S ]U(t) = iU†(t)U(t) = i . (69)

This new operator fulfils the EoM if Ô has explicit time dependence through the Heisenberg equation
assuming ÔH has no explicit time dependence

i
dÔH
dt

= [ÔH , ĤH ] ≡ ÔHĤH − ĤHÔH . (70)

3Note that for a brief period we will use a hat to indicate that an object is an operator
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This is very similar to the classical equivalent Poisson bracket

dO

dt
= {O,H} . (71)

Exercise: Show that (68) indeed leaves expectation values invariant and that the EoM is follows
from the Schrödinger equation.

From now on we will always assume the Heisenberg picture and drop in the subscript H.

2.2 Equal-time canonical commutation relations

One of the first things we have learned about QM was that the position and momentum operators do not
commute, i.e. [q̂, p̂] = i. Extending this for multiple particles, we can define the operator for the position
(or momentum) of the i-th particle as q̂i (p̂i). In position space, these just take the form

q̂k|Ψ(q1, · · · , qn)⟩ = qk|Ψ(q1, · · · , qn)⟩ and p̂k|Ψ(q1, · · · , qn)⟩ = −i
∂

∂qk
|Ψ(q1, · · · , qn)⟩ (72)

The commutation relation is now extended to

[q̂j , p̂k] = iδjk , (73a)

[q̂j , q̂k] = [p̂j , p̂k] = 0 , (73b)

since operators acting on different degrees of freedom will always commute. These are referred to as
canonical commutation relations (CCRs).

In the continuum limit, we have locations in space x⃗ instead indices j, field operators ϕ̂(x⃗, t) instead
of coordinate operators q̂i, and conjugate momenta operator π̂(x⃗, t) instead of momentum operators p̂i.
We can now write the CCRs at equal time t

[ϕ̂(x⃗, t), π̂(x⃗ ′, t)] = iδ(3)(x⃗− x⃗ ′) , (74)

[ϕ̂(x⃗, t), ϕ̂(x⃗ ′, t)] = [π̂(x⃗, t), π̂(x⃗ ′, t)] = 0 . (75)

Note that these are in the Heisenberg picture as they depend on time! While this looks like it might not
be Lorentz invariant (after all, we are treating time and space very different here), the formalism we are
developing is invariant which will become clearer later.

We will get a better idea of what the operator ϕ̂ actually does once we write down a solution that
satisfies both L and the CCRs. However, it is helpful to get an idea early on so it is a bit less abstract.
Consider the vacuum state |0⟩, i.e. a completely empty universe devoid of any particles (we will formalise

this later as well but this suffices for now), as our initial state. We will see shortly that applying ϕ̂(x⃗, t)
on the vacuum will create a new particle at position x⃗.

We can verify the EoM i∂tϕ̂ = [ϕ̂, Ĥ] and i∂tπ̂ = [π̂, Ĥ] follow from the CCRs. For this, we use that
the Hamiltonian is (55)

Ĥ =

∫
d3y Ĥ =

∫
d3y
[1
2
π̂(y⃗, t)2 +

1

2
(∇⃗yϕ̂(y⃗, t))2 +

1

2
m2ϕ̂(y⃗, t)2

]
(76)

where we have used that for the KG field π = ϕ̇ which translates to operators π̂ =
˙̂
ϕ. We now calculate

commutators

[ϕ̂(x⃗, t), Ĥ] = 1

2

[
ϕ̂(x⃗, t), π̂(y⃗, t)2

]
+

1

2

[
ϕ̂(x⃗, t), (∇⃗yϕ̂(y⃗, t))2

]
+

1

2
m2
[
ϕ̂(x⃗, t), ϕ̂(y⃗, t)2

]
. (77)

Here the derivative in the ∇⃗y operator is w.r.t. y⃗ and therefore it commutes with ϕ̂(x⃗, t). Therefore,

[ϕ̂(x⃗, t), Ĥ] =

∫
dy iπ̂(y⃗)δ(x⃗− y⃗) = iπ̂(x⃗, t) , (78)

which is fulfilling the EoM as π̂ =
˙̂
ϕ.
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Exercise: Show that

[π̂(x⃗, t), Ĥ] = i
(
∇2ϕ̂(x⃗, t)−m2ϕ̂(x⃗, t)

)
. (79)

Together, we can deduce the KG equation as

[[ϕ̂, Ĥ], Ĥ] = i[π̂,H] = −
(
∇2ϕ̂(x⃗, t)−m2ϕ̂(x⃗, t)

)
= i2 ˙̂π = − ¨̂

ϕ . (80)

2.3 Solution for the field operators

In (63) we have seen a solution ϕ(x⃗, t) to the KG wave equation. To turn this into a solution for the field

operator ϕ̂, we promote the coefficients a and a∗ to operators, i.e. ak⃗ → â(k⃗) and a∗
k⃗
→ â†(k⃗). Explicitly,

we have for ϕ̂ and π̂ (now written in terms of the four-vector x rather than x⃗ and t)

ϕ̂(x) =

∫
d3k

(2π)3

√
1

2Ek⃗

[
â(k⃗)e−ik·x + â†(k⃗)eik·x

]
, (81a)

π̂(x) =

∫
d3k

(2π)3
(−i)

√
Ek⃗
2

[
â(k⃗)e−ik·x − â†(k⃗)eik·x

]
, (81b)

where we still have k0 = Ek⃗.
It is easy to be overwhelmed by the number of symbols in the equation above so let us focus on the

relevant terms to schematically write

ϕ̂(x) ∼
√

1

2Ek⃗

[
â(k⃗) + â†(k⃗)

]
, (82a)

π̂(x) ∼ (−i)
√
Ek⃗
2

[
â(k⃗)− â†(k⃗)

]
. (82b)

These equations should look very familiar as they are (up to the k⃗ dependence), the decomposition of x̂
and p̂ in terms of ladder operators â and â† of the quantum harmonic oscillator. We can find the CCRs
for the â and â† operators as

[â(p⃗), â†(q⃗)] = (2π)3δ(3)(p⃗− q⃗) , (83a)

[â(p⃗), â(q⃗)] = [â†(p⃗), â†(q⃗)] = 0 . (83b)

Exercise: Show that these follow from the CCRs of ϕ̂ and π̂. To do this, inverse-Fourier trans-
form (81) to show that

â(p⃗) =
1√
2Ep⃗

∫
d3x
[
Ep⃗ϕ̂(x) + iπ̂(x)

]
eip·x ,

â†(p⃗) =
1√
2Ep⃗

∫
d3x
[
Ep⃗ϕ̂(x)− iπ̂(x)

]
e−ip·x .

(84)

Now you can calculate the commutators and reduce them to the CCRs.

The harmonic oscillator became a lot simpler once we wrote the Hamiltonian Ĥ in terms of the ladder
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operators. We can do something similar here with one exception

Ĥ =

∫
d3x
[1
2
π̂(x⃗, t)2 +

1

2
(∇⃗ϕ̂(x⃗, t))2 + 1

2
m2ϕ̂(x⃗, t)2

]
(85)

=

∫
d3x

d3p

(2π)3
d3q

(2π)3

(
−
√
Ep⃗Eq⃗

4

[
â(p⃗)e−ip·x − â†(p⃗)eip·x

][
â(q⃗)e−iq·x − â†(q⃗)eiq·x

]
− p⃗ · q⃗

4
√
Ep⃗Eq⃗

[
â(p⃗)e−ip·x − â†(p⃗)eip·x

][
â(q⃗)e−iq·x − â†(q⃗)eiq·x

]
+

m2

4
√
Ep⃗Eq⃗

[
â(p⃗)e−ip·x + â†(p⃗)eip·x

][
â(q⃗)e−iq·x + â†(q⃗)eiq·x

])
.

(86)

Let us swap p⃗ → −p⃗ and q⃗ → −q⃗ in the terms that have a positive exponential. Note that this only
changes the spatial components, i.e. p · x = Ep⃗ · t− p⃗ · x⃗→ Ep⃗ · t+ p⃗ · x = 2Ep⃗t− p · x.

Ĥ =

∫
d3x

d3p

(2π)3
d3q

(2π)3
e−i(p+q)·x

(
−
√
Ep⃗Eq⃗

4

[
â(p⃗)− â†(−p⃗)e2iEp⃗t

][
â(q⃗)− â†(−q⃗)e2iEq⃗t

]
− p⃗ · q⃗

4
√
Ep⃗Eq⃗

[
â(p⃗) + â†(−p⃗)e2iEp⃗t

][
â(q⃗) + â†(−q⃗)e2iEq⃗t

]
+

m2

4
√
Ep⃗Eq⃗

[
â(p⃗) + â†(−p⃗)e2iEp⃗t

][
â(q⃗) + â†(−q⃗)e2iEq⃗t

])
.

(87)

We can use that ∫
d3x e−i(p+q)·x = (2π)3e−i(Ep⃗+Eq⃗)tδ(3)(p⃗+ q⃗) (88)

to set q⃗ = −p⃗ and Eq⃗ = Ep⃗

Ĥ =

∫
d3p

(2π)3
e−2iEp⃗t

(
−Ep⃗
4

[
â(+p⃗)− â†(−p⃗)e2iEp⃗t

][
â(−p⃗)− â†(+p⃗)e2iEp⃗t

]
+
m2 + p⃗ · p⃗

4Ep⃗

[
â(+p⃗) + â†(−p⃗)e2iEp⃗t

][
â(−p⃗) + â†(+p⃗)e2iEp⃗t

]) (89)

=

∫
d3p

(2π)3
e−2iEp⃗t

−Ep⃗
4

([
â(+p⃗)− â†(−p⃗)e2iEp⃗t

][
â(−p⃗)− â†(+p⃗)e2iEp⃗t

]
−
[
â(+p⃗) + â†(−p⃗)e2iEp⃗t

][
â(−p⃗) + â†(+p⃗)e2iEp⃗t

])
,

(90)

where we have used p⃗ · p⃗+m2 = E2
p⃗ since this on-shell condition was always assumed. We now need to

multiply out the ladder operators to find

Ĥ =

∫
d3p

(2π)3
Ep⃗
2

(
â(+p⃗)â†(+p⃗) + â†(−p⃗)â(−p⃗)

)
. (91)

Swapping the integration variable p⃗→ −p⃗ in the second term and commuting the â to the right of the â†

Ĥ =

∫
d3p

(2π)3
Ep⃗

(
â†(p⃗)â(p⃗) +

1

2

[
â(p⃗), â†(p⃗)

])
. (92)

This is again very similar to the harmonic oscillator where we ended up setting [â, â†] = 1 and Ĥ =
ω(â†â+1/2). Here we have a problem though as the commutator evaluates to δ(0) which is not defined.
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2.4 Vacuum energy and normal ordering

What does it mean for Ĥ to be infinite like this? In practice, nothing. Experiments can only ever measure
the difference between energies so that this term will always cancel. However, this is rather unsatisfactory
as it does not really solve the underlying problem that our result is infinite, nor does it help us work
with the expression. It is quite unwieldy to have infinities like this that are not regulated somehow as it
is all too easy to accidentally have the infinity appear “for real” if we for example had actually used the
commutation relation rather than just writing the commutator. We need a formal and rigorous way of
handling these terms from the beginning.

Lattice regularisation
The simplest way to formalise the removal of this to put our system in a box. Rather than having an
infinitely large universe which allows for uncountably infinitely many momenta, we have a finite volume
of length L (for example with periodic boundary conditions). This means only discrete momenta are
allowed

pi =
2π

L
ni with ni = 0,±1,±2, ... (93)

and we translate ∫
d3p

(2π)3
→ L−3

∑
n⃗

(94)

δ(3)(p⃗− q⃗)→
(
L

2π

)3

δp⃗,q⃗ . (95)

Now we have (2π)3δ(0) = L3 which is perfectly regular as long as L is finite. In the limit L→∞, Ĥ still
divergences but we can now define exactly how we want to subtract the δ(0) problem. Unfortunately, we
are still not done because

Ĥ = L−3
∑
n⃗

Ep⃗

(
â†(p⃗)â(p⃗) +

1

2

[
â(p⃗), â†(p⃗)

]︸ ︷︷ ︸
(2π)3δ(0)

)
= L−3

∑
n⃗

Ep⃗ â
†(p⃗)â(p⃗) +

∑
n⃗

Ep⃗
2
. (96)

Even though the L3 has cancelled, we still have a sum over all possible momenta that will diverge since
Ep⃗ ∼ |p⃗| ∼ n⃗. There are multiple ways of regularising this sum such as using Ramanujan summation
(which is common in string theory and would assign

∑
n n = −1/12) or lattice regularisation (which

defines a largest possible momentum or equivalently a smallest lattice spacing). Whatever way we end
up choosing, we can modify our original L to avoid this problem as a function of the regulator.

This is our first encounter with regularisation (which makes the problem explicit) and renormalisation
(which removes the problem at the level of L).

Another more elegant way to deal with this problem is to backtrace a bit. Fundamentally, our problem
arises from the commutator of â and â† which in turn arises from the ϕ̂ field operator. In our classical field
theory, a and a∗ were numbers so their order did not matter. Similarly, when we derived the Hamiltonian
H we wrote ϕ2 because ϕ is a number. During quantisation, we translated ϕ2 → (ϕ̂)2 which lead to the
commutator when we decided to move â to the right of â†. The trick to avoid this is to always ensure
that â is to the right of â† by using normal ordering. In a normal-ordered expression, which we indicate
with colons, the operators are defined such that â† always comes before â when we go from a classical to
a quantum theory. For example

: ϕ̂(x)2 : =

∫
d3k

(2π)3
√

2Ek⃗

[(
â(k⃗)

)2
+
(
â†(k⃗)

)2
+ 2â†(k⃗)â(k⃗)

]
e−ik·x , (97)

instead of the unordered result

ϕ̂(x)2 =

∫
d3k

(2π)3
√

2Ek⃗

[(
â(k⃗)

)2
+
(
â†(k⃗)

)2
+ â†(k⃗)â(k⃗) + â(k⃗)â†(k⃗)

]
e−ik·x . (98)
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Both of these have the same classical limit but are different operators. However, only the normal-ordered
one : ϕ̂2 : avoids the problem of the δ(0) if we define Ĥ as

Ĥ → : Ĥ : =

∫
d3x :

[1
2
π̂(x⃗, t)2 +

1

2
(∇⃗ϕ̂(x⃗, t))2 + 1

2
m2ϕ̂(x⃗, t)2

]
: =

∫
d3p

(2π)3
Ep⃗ â

†(p⃗)â(p⃗) . (99)

We can now finally answer the question raised earlier about the interpretation of ϕ̂ by using the ladder
operators â and â†. Similar to the discussion of the harmonic oscillator, we begin by defining a vacuum
state |0⟩ such that â destroys it

â(p⃗)|0⟩ = 0 for all possible p⃗ . (100)

and it is properly normalised, i.e.

⟨0|0⟩ = 1 . (101)

The (normal-ordered) energy of this state is just zero since it is immediately destroyed by â. This is the
reason that |0⟩ is called the vacuum state and why the problematic contribution of the δ(0) to Ĥ we
encountered earlier is called vacuum energy.

2.5 Particles

Now that we know what the vacuum is, what happens if we let â† act upon it? What is the interpretation
of the new state

|⃗k⟩ = Ckâ
†(k⃗)|0⟩ ? (102)

This state is clearly orthogonal

⟨p⃗|q⃗⟩ = C∗
pCq ⟨0|â(p⃗)â†(q⃗)|0⟩ = C∗

pCq ⟨0|[â(p⃗), â†(q⃗)]|0⟩ = C∗
pCq (2π)3δ(3)(p⃗− q⃗) . (103)

A good and Lorentz-invariant choice of the normalisation is Cp =
√

2Ep⃗ because then

⟨p⃗|q⃗⟩ = 2Ep⃗(2π)
3δ(3)(p⃗− q⃗) , (104)

which is Lorentz invariant.

Lorentz invariance and integrals
Now is a good time to look at this term a bit closer. We will very often see integrals of the form∫

d3p

(2π)3 2Ep⃗
f(p) , (105)

with Ep⃗ =
√
p⃗2 +m2. Even though it does not appear to be Lorentz-invariant, it is. This means that

if f(p) is Lorentz-invariant, so is the integral. Because it is so very common, the measure it is often
abbreviated as dΦp, i.e. ∫

d3p

(2π)3 2Ep⃗
=

∫
dΦp (106)

To show this, let us begin by adding an additional integration over p0 = Ep⃗ which is forced on-shell by a
delta function ∫

dΦ =

∫
d4p

(2π)4
(2π)δ(p0 − Ep⃗)

2Ep⃗
. (107)

We can use the identity

δ(αx) =
δ(x)

|α|
, (108)
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with α = 2Ep⃗ to write

(2π)δ(p0 − Ep⃗)
2Ep⃗

= (2π)δ
((

2Ep⃗
)(
p0 − Ep⃗

))
= θ(p0) (2π)δ

((
p0 + Ep⃗

)(
p0 − Ep⃗

))
. (109)

Here we have used that, as long as p0 > 0 (as enforced by the Heaviside function), p0 + Ep⃗ = 2Ep⃗.
Expanding the argument and using the definition of Ep⃗∫

dΦ =

∫
d4p

(2π)4
θ(p0) (2π)δ

(
p2 −m2

)
. (110)

For proper, orthochronous Lorentz transformations, i.e. those that do not change the sign of p0, this is
manifestly Lorentz-invariant.

We can understand what this state is by calculating its energy

Ĥ |⃗k⟩ =
√

2Ek⃗ Ĥ â†(k⃗)|0⟩ =
√
2Ek⃗

∫
d3p

(2π)3
Ep⃗ â

†(p⃗)â(p⃗)â†(k⃗)|0⟩

=
√

2Ek⃗

∫
d3p

(2π)3
Ep⃗ â

†(p⃗)
([
â(p⃗), â†(k⃗)

]
+ â†(k⃗)â(p⃗)

)
|0⟩

=
√
2Ek⃗

∫
d3p

(2π)3
Ep⃗ (2π)3δ(3)(p⃗− k⃗)â†(p⃗)|0⟩ =

√
2Ek⃗Ek⃗â

†(k⃗)|0⟩

= Ek⃗ |⃗k⟩ , (111)

and momentum

P̂µ |⃗k⟩ = kµ |⃗k⟩ (112)

Exercise: Show that the total momentum operator can be written as

P̂µ =

∫
d3x : Tµ0 : =

∫
d3p

(2π)3
pµ â†(p⃗)â(p⃗) . (113)

This means that, as expected, |⃗k⟩ is again an eigenstate of Ĥ but also that â†(k⃗) has create an excited

state with energy Ek⃗ and momentum kµ. Since E2
k⃗
− k⃗2 = m2, it is not unreasonable to say that this is

a particle of mass m that has been created with momentum kµ. Note that this particle is a completely
de-localised plane wave because it has definite momentum kµ. If we instead wanted to create a particle
at a given position, we would have to use ϕ̂(x) itself.

Note that we can create multiple particles as well. If we apply â†(p⃗) and â†(q⃗) we get√
2Ep⃗ â

†(p⃗)
√
2Eq⃗ â

†(q⃗) |0⟩ ≡ |p⃗, q⃗⟩ . (114)

Since the two creation operators commute, |p⃗, q⃗⟩ = |q⃗, p⃗⟩. This allows us to conclude that the particles
described by the KG equation follow Bose-Einstein statistics, i.e. do not pick up a sign under permutation
The spin-statistics theorem, for which no simple proof is known, states that particles following the Bose-
Einstein statistics (i.e. bosons) have integer spin while those that follow the Fermi-Dirac statistics (i.e.
fermions for which |p⃗, q⃗⟩ = −|q⃗, p⃗⟩) have half-integer spin.

2.6 Propagators

The first physics question we can ask of our theory is the amplitude of a particle travelling from y to x.
This is an important point from a causality perspective as well: a particle created at y should only be
able to reach x if the distance between them is time-like, i.e. (x− y)2 > 0.
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The most naive way of phrasing this question is to create a particle at position y and consider the
overlap with a particle being created at position x, i.e.

D(x− y) = ⟨0|ϕ̂(x)ϕ̂(y)|0⟩ . (115)

It is easy to see that

D(x− y) =
∫

d3p

(2π)32Ep⃗
e−ip·(x−y) (116)

which is Lorentz-invariant as we saw earlier.

Exercise: Show this by working through the operator algebra.

However, this is not quite physical. A particle may propagator from y to x even across space-like
separations as long as it does not influence anything outside its future light cone. Therefore we should
ask whether the creation at y influences the destruction at x, i.e. consider the commutator

⟨0|
[
ϕ̂(x), ϕ̂(y)

]
|0⟩ = D(x− y)−D(y − x) . (117)

If (x − y)2 < 0, it is possibly to continuously Lorentz transform x − y into y − x meaning that the
expectation value vanishes, ensuring causality4. This is not possible for (x− y)2 > 0 so that events that
are within each other’s light cones can influence each other.

(117) is our first example of a vacuum expectation value (vev) which is an object of the form

⟨0|Ô|0⟩ (118)

for some (potentially complicated) operator Ô. The term is more commonly used for the vev of a single

field v = ⟨0|ϕ̂|0⟩. The only field in nature with a non-zero is the Higgs field which has v = 246GeV and
is the reason for masses of the W and Z bosons.

Let us study (117) further, now assuming a frame where y happens before x, i.e. x0 > y0, so that we
can cleanly speak of y being cause and x being effect. Taking the difference of the two terms using (116)

⟨0|
[
ϕ̂(x), ϕ̂(y)

]
|0⟩ =

∫
d3p

(2π)32Ep⃗

[
e−ip·(x−y) − eip·(x−y)

]
=

∫
d3p

(2π)3

(
1

2Ep⃗
e−ip·(x−y)

∣∣∣∣
p0=Ep⃗

+
1

−2Ep⃗
e−ip·(x−y)

∣∣∣∣
p0=−Ep⃗

)
.

(119)

where we have swapped p⃗→ −p⃗ in the second term and modified p0 → −p0 = −Ep⃗ accordingly. We can
use an inverted version of the residue theorem∫

dp0

2πi

1

(p0)2 − E2
p⃗

e−ip·(x−y) = resp0=+Ep⃗

(
· · ·
)
+ resp0=−Ep⃗

(
· · ·
)

=
1

2Ep⃗
e−ip·(x−y)

∣∣∣∣
p0=Ep⃗

+
1

−2Ep⃗
e−ip·(x−y)

∣∣∣∣
p0=−Ep⃗

, (120)

where the contour is defined as shown in Figure 1. This contour is valid only for x0 > y0 as otherwise
the exponential e−ip

0(x0−y0) would diverge. We therefore write

DR(x− y) ≡ θ(x0 − y0)⟨0|
[
ϕ̂(x), ϕ̂(y)

]
|0⟩ =

∫
d4p

(2π)4
1

p2 −m2
e−ip·(x−y) , (121)

where we have neatened up the denominator using the definition of Ep⃗. We will call this object the
delayed Green’s function5. A Green’s function is the ‘inverse’ of a differential operator. In our case

(∂2 +m2)DR(x− y) = −iδ(4)(x− y) . (122)

4This is also true for the commutator itself and does not rely on the vacuum states on either side.
5You will find this object often called the retarded Green’s function. This term is quite problematic for a number of

reasons, not least of all because it is a very archaic term that is not very descriptive.
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ℜp0

ℑp0

−Ep⃗ +Ep⃗

Figure 1: The integration contour used for
the delayed propagator DR

ℜp0

ℑp0

−Ep⃗ +Ep⃗

Figure 2: The integration contour used for
the Feynman propagator DF

It turns out that there is a slightly more useful way of definingD which is called the Feynman prescription.
Rather than closing the contour above the real axis as in Figure 1, we have the contour weave between
the poles as in Figure 2. The result is a mixture of the delayed and advanced Green’s functions

DF (x− y) =

{
D(x− y) x0 > y0

D(y − x) x0 < y0
=

∫
d4p

(2π)4
1

p2 −m2 + iϵ
e−ip·(x−y)

= θ(x0 − y0)⟨0|ϕ̂(x)ϕ̂(y)|0⟩+ θ(y0 − x0)⟨0|ϕ̂(y)ϕ̂(x)|0⟩ ≡ ⟨0|T{ϕ̂(x)ϕ̂(y)}|0⟩ .

(123)

In this Feynman propagator we ensure the order of events using the time-ordering symbol T . We are
required to place the last event on the left and the first event on the right. We will see soon why this is
a good choice.
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3 Interacting scalar field

Now that we understand free quantum fields, we can turn our attention to interacting fields. Unfortu-
nately, there are only a few QFTs that permit an exact analytic solution such as the Schwinger model,
a two-dimensional description of a photon and fermion. Most of these are only useful in very limited
circumstances or as toy models. Another approach is to solve the theory numerically, usually by placing it
on a finite lattice. While this allows the study of realistic models like quantum chromodynamics (QCD),
it is extremely complicated to do from scratch.

Here we will instead focus on perturbation theory, i.e. we will consider the interaction to be a small
perturbation on top of the free field which we already understand. This means we split the full Lagrangian

L = L0 + LI (124)

into a free theory L0 and an interaction term LI which is hopefully small. Perturbation theory allows us
to study theories like quantum electrodynamics (QED) or QCD (at least in the high-energy limit). The
calculation of the anomalous magnetic moment g − 2 of the electron I have mentioned at the beginning
of the course is (almost completely) done this way. Similarly, calculations that are used at Large Hadron
Collider (LHC) and that, for example, helped discover the Higgs boson in 2012, are also mostly done
using perturbation theory. This is valid because the coupling strength between different particles, i.e.
LI , is small in these regimes. In the example for g − 2, we expand in αem = 1/137 and the theory value
includes effects up to α5. At the LHC we usually expand in the strong coupling αs ≈ 0.1 and a few
cutting-edge calculations have reached α3

s accuracy.
In this chapter we will only consider the self-interaction of a scalar particle ϕ. Nature has a funda-

mental scalar particle, namely the Higgs boson, and the theory we develop here can (almost) be used to
describe the Higgs boson. The difference is that the real Higgs field is not a single real-valued field (like
the one we discussed) but a doublet of two complex-valued fields. The relevant part of the Lagrangian is
usually written as (like on that mug)

L = |∂µϕ|2 − V (ϕ) = |∂µϕ|2 + µ2ϕ†ϕ− λ

4!
(ϕ†ϕ)2 . (125)

We will modify this slightly for our single real-valued scalar field

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2︸ ︷︷ ︸

L0

− λ

4!
ϕ4︸︷︷︸

Li

. (126)

I want to stress that you could repeat everything we are about to do for the more general case of the Higgs
boson and I would encourage you to try. This theory is often called the ϕ4 model due to its interaction
term. Another related model would be the ϕ3 theory which would have Li = λ/3! ϕ3 which can serve as
a simplified model of QED.

It is still possible to derive CCRs for an interacting Lagrangian but we will not be able to write ϕ
in terms of ladder operators because this relied on the free field’s EoM. The important concept behind
perturbative QFT is that the interaction is not just small but usually also short-ranged. This means that
at the beginning and end of the experiment, we can consider the particles practically free. For example
at the 27 km big LHC which has 25m big detectors, the actual perturbative interaction takes place in a
region that is smaller than 10−18 m (based on a typical hard interaction scale of 500GeV). For t→ ±∞
the particles involved in the collision are just too far away from each other to feel each other’s influence,
meaning that we can use the free-particle solution in this regime. We now need to try and find a way to
formalise this.

3.1 Interaction picture

In Section 2.1 we have seen the Heisenberg and Schrödinger pictures. In the former, the time dependence
fully resides in the operators while in the latter it is in the states. We will now develop a third picture,
the interaction picture that splits the time dependence between the two: the operators will follow the free
Hamiltonian H0’s Heisenberg equation (70) while the states have a time dependence from the interaction
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Hamiltonian HI . From (124), it follows immediately that

H = H0 +HI = H0 −
∫

d3LI . (127)

Recall how we wrote

|ΨH⟩ = U−1(t)|ΨS(t)⟩ = U†(t)|ΨS(t)⟩ = |ΨS(0)⟩ . (67)

OH = U†(t)OSU(t) , (68)

with

i
∂U

∂t
= HSU . (66)

Rather than taking the full H in (66) we now only use the free H0 to define

|ΨI(t)⟩ = eiH0t|ΨS(t)⟩ (128)

OI(t) = eiH0tOSe
iH0t (129)

The time evolution of OI is still governed by the free Heisenberg equation (70)

i
dOI
dt

= [OI , H0] , (130)

while the states follow a modified Schrödinger equation

i
d

dt
|ΨI(t)⟩ = i

d

dt

(
eiH0t|ΨS(t)⟩

)
= −eiH0tH0|ΨS(t)⟩+ eiH0tH|ΨS(t)⟩ = eiH0tHIe

−iH0t|ΨI(t)⟩

= H̃I |ΨI(t)⟩ ,
(131)

where we have used the Schrödinger picture Schrödinger equation for |ΨS(t)⟩ and defined the interaction
picture interaction Hamiltonian H̃I .

These rules tell us how to transform from the Schrödinger picture to the interaction picture. We still
need to translate between the Heisenberg and interaction pictures. At some instant t0, we define the
pictures to be identical. At any other time t, we translate via the Schrödinger picture

ϕH(t) = U†(t, t0)ϕI(t)U(t, t0) with U(t, t0) = eiH0(t−t0)e−iH(t−t0) . (132)

It is easy to see that the time evolution of U(t, t0) is

i
d

dt
U(t, t0) = H̃IU(t, t0) . (133)

3.2 The S matrix

We are now ready to describe a scattering process. The time evolution of the field operator ϕ is given by
U(t, t0). Let us take the limit t0 → −∞, well before the scattering takes place. This is where we require
the interaction picture and Heisenberg pictures to agree. The field operators in this limit are just the
free field which we refer to as the “in” contribution and write in terms of ladder operators

ϕin = lim
t→−∞

ϕ(t) =

∫
d3k

(2π)3
1√
2Ek⃗

[
ain(k⃗)e

−ik·x + a†in(k⃗)e
ik·x
]
. (134)

Note that ϕin still has the time dependence from the free Hamiltonian. This is the case despite the limit
since there is still the dynamics of the free field. At a later time, including all the way through the
scattering, we have

ϕ(t) = U†(t,−∞)ϕinU(t,−∞) . (135)
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Experimentally, we do not observe ϕ(t) but rather the outcome of the scattering in the far future t→∞

ϕout = lim
t→+∞

ϕ(t) = U†(+∞,−∞)ϕinU(+∞,−∞) . (136)

This “out” field is once again free and we can write it again in terms of ladder operators

ϕout = lim
t→+∞

ϕ(t) =

∫
d3k

(2π)3
1√
2Ek⃗

[
aout(k⃗)e

−ik·x + a†out(k⃗)e
ik·x
]
. (137)

Both ϕin and ϕout are free field solutions but they are different free field solutions. This is because, due to
the scattering, the ladder operators ain and aout are different. We refer to these states as the asymptotic
states to indicate the limit t→ ±∞.

The relation between the two sets of asymptotic states is governed by the time evolution operator U .
For simplicity, let us define the S matrix

S = U(+∞,−∞) (138)

Specifically,

aout(k⃗) = S†ain(k⃗)S and aout(k⃗)
† = S†a†in(k⃗)S . (139)

This means that S also transform between in and out states. We begin our experiment with a prepared
in state |in⟩i by applying a†in on the vacuum. During the scattering this gets transformed into an out
state |out⟩o which is made up through a†out. We will use a subscripts i and o to indicate the ladder
operators we have used. These two states are related through the S matrix

|out⟩o = S†|in⟩i . (140)

To understand the scattering process we first need write |in⟩i in terms of the basis of the out states |n⟩o

|in⟩i =
∑
n

cn|n⟩o . (141)

Experimentally we will measure the transition probability between our prepared |in⟩i and a given out
state |n⟩o

P ∼
∣∣
o⟨n|in⟩i

∣∣2 =
∣∣
i⟨n|S|in⟩i

∣∣2 =
∣∣
o⟨n|S|in⟩o

∣∣2 . (142)

This means our goal will be to find an expression for the S matrix.
To do this, we would first need to find U to use (138). The definition (132) is not very helpful because

of how complicated it is. Instead, we will use the differential equation (133) which defines this solution
in the first place. Integrating from t0 = −∞ to t

U(t,−∞) = 1− i
∫ t

−∞
dt1 H̃I(t1) · U(t1,−∞) . (143)

Note that, because we fixed t0 = −∞, the interaction Hamiltonian H̃I is defined in terms of in states.
Unfortunately, this expression still has a U on the right-hand side so let us iterate this

U(t,−∞) = 1− i
∫ t

−∞
dt1 H̃I(t1) + (−i)2

∫ t

−∞
dt1

∫ t1

−∞
dt2 H̃I(t1) · H̃I(t2) · U(t2,−∞) (144)

= 1 +

∞∑
n=1

(−i)n
∫ t

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtn H̃I(t1) · H̃I(t2) · · · H̃I(tn) . (145)

Per our construction of the interaction picture, H̃I only contains the interaction and not the dynamics of
the free field. For example, in the theory we defined in (126), we had H̃I ∼ λ. Since we further requested
that the coupling λ of interaction is small, we would be justified to assume that H̃I(t1) · H̃(t2) ∼ λ2 is
smaller than H̃I(t1) ∼ λ. We therefore often choose to truncate the summation at a finite n (in practice
is this rarely more than n = 2 or n = 3 because of the complexity of the calculation).
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One important feature of the iterated integrals in (145) is that we go further into the past in the
product of H̃I since

tn ≤ tn−1 ≤ · · · ≤ t1 ≤ t , (146)

which makes for awkward integration boundaries. Instead, let us define the time-ordered product similar
to the normal ordering we have used before. Specifically,

T
{
O(t1) ·O(t2) · · ·O(tn)

}
= O(tρ(1)) ·O(tρ(2)) · · ·O(tρ(n)) , (147)

where ρ is the permutation of {1, ..., n} such that time is ordered, i.e.

tρ(i) ≥ tρ(j) if i < j . (148)

We can now change the integration domain to (−∞, t] for each integral at the cost of a factor of n!.
Explicitly for n = 2, we split the integral into two equal pieces and swap t1 ↔ t2∫ t

−∞
dt1

∫ t1

−∞
dt2 H̃I(t1) · H̃I(t2) =

1

2

∫ t

−∞
dt1

∫ t1

−∞
dt2 H̃I(t1)·H̃I(t2) +

1

2

∫ t

−∞
dt2

∫ t2

−∞
dt1 H̃I(t2) · H̃I(t1)

=
1

2

∫ t

−∞
dt1dt2 T

{
H̃I(t1) · H̃I(t2)

}
. (149)

Doing the same for all orders, we can rewrite U as

U(−∞, t) = 1 +

∞∑
n=1

(−i)n

n!

∫ t

−∞
dt1 · · · dtn T

{
H̃I(t1) · H̃I(t2) · · · H̃I(tn)

}
(150)

≡ T exp

(
− i
∫ t

−∞
dt′ H̃I(t

′)

)
. (151)

Here we have introduce the time-ordered exponential as a short-hand. We can make one more simplifi-
cation by taking the limit t→∞ and by realising that

H̃I =

∫
d3x HI = −

∫
d3x LI (152)

to arrive at our most compact solution for the S matrix

S = T exp

(
i

∫
dx4LI

)
= T eiSI (153)

with the interaction part of the action SI . Looking at this you might think there is some deep inter-
pretation of this expression in terms of the action, similar to the principle of least action we had in the
classical case. And you would be right to think this, it is possible to perform the entire quantisation
procedure for free and interacting fields by defining the path integral

Z =

∫
Dϕ eiS[ϕ]/ℏ , (154)

which integrates over all possible field configurations ϕ and weights them according to eiS[ϕ]/ℏ. In the
classical limit ℏ→ 0 only the field configuration of the least action contributes to the integral. While very
elegant, the path-integral formalism is more complicated since we would have to define what Dϕ means.
Therefore, we will not use this method going forward instead relying on the canonical quantisation we
have used so far.
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3.3 Wick theorem

If we want to make a prediction about a scattering process we need to calculate S matrix elements to a
given order. This means calculating correlators like

i⟨out|
∫

d4x1 · · · d4xn T
{
LI(x1) · · · LI(xn)

}
|in⟩i . (155)

Since both LI and the external states involves a number of ϕ fields, we want to be able to calculate
general objects like

T
{
ϕ(x1) · · ·ϕ(xm)

}
. (156)

We have already seen a simple case of this with the Feynman propagator DF = ⟨0|T{ϕ(x)ϕ(y)}|0⟩
in (123). To make calculating this easier, let us define

ϕI =

∫
d3k

(2π)3
1√
2Ek⃗

[
a(k⃗)e−ik·x︸ ︷︷ ︸

→ϕ(+)

+ a†(k⃗)e+ik·x︸ ︷︷ ︸
→ϕ(−)

]
= ϕ(+)(x) + ϕ(−)(x) . (157)

This decomposition into positive (ϕ(+)) and negative (ϕ(−)) frequency modes is helpful because

ϕ(+)|0⟩ = ⟨0|ϕ(−) = 0 . (158)

It also makes it easier to define normal ordering which moves the a, and therefore ϕ(+), to the right of
the a†, and therefore ϕ(−). It follows that the vev of a normal-ordered list of fields is zero

⟨0| : ϕ(x1) · · ·ϕ(xm) : |0⟩ = 0 . (159)

To see why this is so useful, consider again the two-particle case m = 2 that we considered when defining
the Feynman propagator. For x ̸= y,

T{ϕI(x)ϕI(y)} =

{
ϕ(+)(x)ϕ(+)(y) + ϕ(+)(x)ϕ(−)(y) + ϕ(−)(x)ϕ(+)(y) + ϕ(−)(x)ϕ(−)(y) x0 > y0

ϕ(+)(y)ϕ(+)(x) + ϕ(+)(y)ϕ(−)(x) + ϕ(−)(y)ϕ(+)(x) + ϕ(−)(y)ϕ(−)(x) x0 < y0

=

{
ϕ(+)(x)ϕ(+)(y) + ϕ(−)(y)ϕ(+)(x) + ϕ(−)(x)ϕ(+)(y) + ϕ(−)(x)ϕ(−)(y) x0 > y0

ϕ(+)(y)ϕ(+)(x) + ϕ(−)(x)ϕ(+)(y) + ϕ(−)(y)ϕ(+)(x) + ϕ(−)(y)ϕ(−)(x) x0 < y0

+

{
[ϕ(+)(x), ϕ(−)(y)] x0 > y0

[ϕ(+)(y), ϕ(−)(x)] x0 < y0
. (160)

Every term expect for the commutator is now a normal-ordered product of interaction-picture operators.
The commutator is the only term with a non-vanishing vev. Because the interaction-picture fields ϕ
follow the time evolution of the free Hamiltonian, we can use what we discovered in the previous section.
Especially, we can use that the commutator corresponds to the Feynman propagator DF (x− y).

To simplify our notation, let us define a Wick contraction as

ϕ(x) ϕ(y) =

{
[ϕ(+)(x), ϕ(−)(y)] x0 > y0

[ϕ(+)(y), ϕ(−)(x)] x0 < y0
= DF (x− y) , (161)

to indicate which two terms are part of the propagator. Here we drop the I subscript and assume that
Wick-contracted terms are always in the interaction picture

T{ϕ(x)ϕ(y)} = : ϕ(x)ϕ(y) : +ϕ(x) ϕ(y) . (162)

This is the simplest case of the Wick theorem. The more general case is

T{ϕ(x1)ϕ(x2) · · ·ϕ(xm)} = : ϕ(x1)ϕ(x2) · · ·ϕ(xm) + all possible contractions : . (163)
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To calculate time-ordered products like this we need to sum over all possible ways of grouping fields into
pairs using the Wick contractions. As an example, let us consider the case of four fields m = 4

T{ϕ1ϕ2ϕ3ϕ4} = : ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4

+ ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4

+ ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 : ,

(164)

where we use ϕi ≡ ϕ(xi) to save space. We already know how to evaluate Wick-contracted terms using
DF , i.e.

: ϕ1 · · ·ϕi−1·ϕi ·ϕi+1 · · ·ϕj−1·ϕj ·ϕj+1 · · ·ϕm : =

DF (xi − xj) : ϕ1 · · ·ϕi−1 · ϕi+1 · · ·ϕj−1 · ϕi+1 · · ·ϕm : .
(165)

If we are considering vevs the uncontracted terms drop out and we only need to consider all m terms
contracted, i.e. for example the last line of (164).

Proof of the Wick theorem
We will use a proof by induction. Our base case is m = 2 which we have already shown. For the induction
step we assume the theorem holds for m− 1 fields and assume that w.l.o.g. the fields are time-ordered,
i.e. x01 ≤ x02 ≤ ... ≤ x0m. We have

T{ϕ1 · ϕ2 · · ·ϕm} = ϕ1 · ϕ2 · · ·ϕm =
(
ϕ
(+)
1 + ϕ

(−)
1

)
· : ϕ2 · · ·ϕm +

(
contractions \ ϕ1

)
: , (166)

where we have applied the Wick theorem for ϕ2 · · ·ϕm. We now need to move the ϕ
(±)
1 into the normal

ordering. The ϕ
(−)
1 is trivial because it is already where it is supposed to be. To get the ϕ

(+)
1 in we need to

commute it all the way through the product. For fields that are already involved in a contraction, this is
trivial as DF is just a number and commutes with everything. This means it is sufficient to only consider
uncontracted fields. To simplify the notation a bit, we will write down the case without contractions but
the generalisation is trivial once a suitable notation is developed

ϕ
(+)
1 : ϕ2 · · ·ϕm : = : ϕ2 · · ·ϕm : ϕ

(+)
1 + [ϕ

(+)
1 , : ϕ2 · · ·ϕm : ]

= : ϕ
(+)
1 · ϕ2 · · ·ϕm + [ϕ

(+)
1 , ϕ2] · ϕ3 · · ·ϕm + ϕ2 · [ϕ(+)

1 , ϕ3] · ϕ4 · · ·ϕm + · · · : . (167)

Since ϕ
(+)
1 commutes with the + part of ϕi, we have

ϕ
(+)
1 : ϕ2 · · ·ϕm : = : ϕ

(+)
1 · ϕ2 · · ·ϕm + ϕ1ϕ2 ·ϕ3 · · ·ϕm + ϕ1ϕ2 ·ϕ3 ·ϕ4 · · ·ϕm + · · · : , (168)

which is exactly what we wanted to show.

Let us know use what we know to find a graphic representation of these contractions. Consider the
vev of (164)

⟨0|T{ϕ1ϕ2ϕ3ϕ4}|0⟩ = ⟨0|
(

: ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 : +uncontracted
)
|0⟩ (169)

= DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3) .
(170)

Remember that the xi are points in spacetime and DF (xi − xj) contains the part of the amplitude that
moves a particle from xi to xj (or vice versa). We can therefore draw diagrams to represent these terms

⟨0|T{ϕ1ϕ2ϕ3ϕ4}|0⟩ =

x1 x2

x3 x4

+

x1 x2

x3 x4

+

x1 x2

x3 x4

. (171)
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This type of diagram is known as a Feynman diagram and they will soon get more interesting. The three
diagrams in (171) merely encode all three ways particles can move between the four positions.

Note that if we had three fields we would have found

⟨0|T{ϕ1ϕ2ϕ3}|0⟩ = ⟨0|
(

: ϕ1ϕ2ϕ3 + ϕ1ϕ2ϕ3 + ϕ1ϕ2ϕ3 + ϕ1ϕ2ϕ3 :
)
|0⟩ = 0 , (172)

because all of the terms have an uncontracted field, i.e. they are ∝ ⟨0| : ϕi : |0⟩ = 0.

3.4 Asymptotic states and the interacting vacuum

Before we can develop Feynman diagrams further, we need to go to two diversions: one of them relevant,
one less so.

The first point is related to the asymptotic states that we defined in (134)

ϕin(x) = lim
t→−∞

ϕ(t) =

∫
d3k

(2π)3
1√
2Ek⃗

[
ain(k⃗)e

−ik·x + a†in(k⃗)e
ik·x
]
. (134)

This operator creates a particle at position x. However, it is often more useful to think in momentum
space and instead create a particle of momentum p as we did in Section 2.5. For this, we defined (102)
for the free field which we translate to the ϕin fields

|p⟩ =
√
2Ep⃗ a

†
in(p)|0⟩ . (173)

Applying ϕ(+)(x) on this state

ϕ(+)(x)|p⟩ =
∫

d3k

(2π)3
e−ik·x

√
2Ep⃗
2Ek⃗

ain(k⃗)a
†
in(p)|0⟩ =

∫
d3k

(2π)3
e−ik·x

√
2Ep⃗
2Ek⃗

[ain(k⃗), a
†
in(p)]|0⟩ (174)

= e−ip·x|0⟩ , (175)

where we have used that [ain, a
†
in]|0⟩ = aina

†
in|0⟩ − a

†
inain|0⟩ and ain|0⟩ = 0. Of course we can repeat the

same construction for the out states as well. This is the connection between S matrix elements and the
vevs of time-ordered products that we have been calculating with the Wick theorem.

The nature of the vacuum
This diversion is not particularly important for the applications of QFT but is quite a fundamental
building block of the theory. So far we have been using |0⟩ both for the ground state of the free theory
and of the interacting theory. Unfortunately, since the theories are not the same, there is no reason that
the two ground states should be the same (or even that there should be a relation between the two).
Here, and only here, we will distinguish between the free theory’s vacuum |0⟩ and that of the interacting
theory |Ω⟩.

We define the energy zero as H0|0⟩ = 0 which means that, in general, the energy of the interacting
vacuum will be different E0 = ⟨Ω|H|Ω⟩. To relate the two Heisenberg states, we apply the full theory’s
time evolution operator e−iHt to the free vacuum

e−iHt|0⟩ =
∑
n

e−iEnt|n⟩⟨n|0⟩ = e−iE0t|Ω⟩⟨Ω|0⟩+
∑
n>0

e−iEnt|n⟩⟨n|0⟩ (176)

with eigenstates |n⟩ and eigenenergies En of the full theory which includes the ground state |Ω⟩. Since
per definition, the ground state has the lowest energy En > E0 for all n > 0. In the limit t→∞(1− iδ)
all terms vanish since δ > 0 but the ground state’s contribution will vanish the slowest

e−iHt|0⟩ t→∞(1−iδ)
= e−iE0t|Ω⟩⟨Ω|0⟩+ terms that vanish faster . (177)

We can now solve this for |Ω⟩ and obtain

|Ω⟩ = lim
t→∞(1−iδ)

(
e−iE0t⟨Ω|0⟩

)−1

e−iHt|0⟩ . (178)
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To make this a bit easier to use, let us shift t → t + t′ with t′ ≪ t and add a factor eiH0(t+t
′) which, if

applied to |0⟩, will give one

|Ω⟩ = lim
t→∞(1−iδ)

(
e−iE0(t+t

′)⟨Ω|0⟩
)−1

e−iH(t+t′)|0⟩ (179)

= lim
t→∞(1−iδ)

(
e−iE0(t

′−(−t))⟨Ω|0⟩
)−1

e−iH(t′−(−t))eiH0(t+t
′)︸ ︷︷ ︸

U(t′,−t)

|0⟩ . (180)

This means that we can obtain the interacting vacuum from the free vacuum by evolving it from the
distant past (−t → ∞) to the present t′. A similar construction is possible for ⟨Ω| where we need to
choose t to be the opposite sign

⟨Ω| = lim
t→∞(1−iδ)

(
e−iE0(t−t′)⟨0|Ω⟩

)−1

⟨0|U(t, t′) . (181)

We can now write the correlator for x0 > y0 > t′

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ = lim
t→∞(1−iδ)

(
e−iE0(t−t′)⟨0|Ω⟩

)−1

⟨0|U(t, t′)︸ ︷︷ ︸
⟨Ω|

U†(x0, t′)ϕI(x)U(x0, t′)︸ ︷︷ ︸
ϕ(x)

U†(y0, t′)ϕI(y)U(y0, t′)︸ ︷︷ ︸
ϕ(y)

U(t′,−t)|0⟩
(
e−iE0(t

′−(−t))⟨Ω|0⟩
)−1

︸ ︷︷ ︸
|Ω⟩

.

(182)

We can simplify things using U†(t1, t2) = U(t2, t1) and U(t1, t2)U(t2, t3) = U(t1, t3) assuming the times
are properly ordered

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ = lim
t→∞(1−iδ)

(
e−iE0 2t|⟨Ω|0⟩|2

)−1

⟨0|U(t, x0)ϕI(x)U(x0, y0)ϕI(y)U(y0,−t)|0⟩ . (183)

Assuming ⟨Ω|Ω⟩ = 1, we can write

⟨Ω|Ω⟩ =
(
e−iE0 2t|⟨Ω|0⟩|2

)−1

⟨0|U(t, t′)U(t′,−t)|0⟩ (184)

to cancel the prefactor phase and E0

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ = lim
t→∞(1−iδ)

⟨0|U(t, x0)ϕI(x)U(x0, y0)ϕI(y)U(y0,−t)|0⟩
⟨0|U(t,−t)|0⟩

. (185)

This is completely time-ordered and would have also held for y0 > x0. We can therefore write it as a
time-ordered product and use (151)

⟨Ω|T
{
ϕ(x)ϕ(y)

}
|Ω⟩ = lim

t→∞(1−iδ)

⟨0|T

{
ϕI(x)ϕI(y) exp

(
− i
∫ t

−t
dt′ H̃I(t

′)

)}
|0⟩

⟨0|T

{
exp

(
− i
∫ t

−t
dt′ H̃I(t′)

)}
|0⟩

. (186)

This result is known as the Gell-Mann and Low theorem and it allows us to slightly formalise what we
have been doing (which amounts to ignoring the denominator).
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Haag’s theorem
For the above discussion, we have assumed that both |0⟩ and |Ω⟩ exist in the same space and that their
overlap ⟨0|Ω⟩ ̸= 0. In practice, this is not true, making the construction invalid. Further, the operator
U(−∞, t), that we have used to relate the free states to the interacting ones, does not exist either. This
result is known as Haag’s theorem and it seriously jeopardises the construction of any QFT. Luckily
for us, there are a number of ways to, if not rescue the proof, at least stabilise it enough to be used in
calculations. This problem is one of the many issues facing a truly axiomatic construction of QFT.

3.5 Feynman diagrams

To study our first non-trivial Feynman let us consider ⟨Ω|T
{
ϕ(x)ϕ(y)

}
|Ω⟩, i.e. the propagator of the

interacting theory. We will assume implicitly that these operators are in the interaction picture even
though they are not contracted just yet. For this we use the Gell-Mann-Low theorem (186) but will
ignore the denominator for now. We have

⟨Ω|T
{
ϕ(x)ϕ(y)

}
|Ω⟩ ∼

⟨0|T

{
ϕ(x)ϕ(y)− iϕ(x)ϕ(y)

∫
dt′ H̃I(t

′)− 1

2!
ϕ(x)ϕ(y)

∫
dt′dt′′ H̃I(t

′)HI(t
′′) + · · ·

}
|0⟩ (187)

= ⟨0|T

{
ϕ(x)ϕ(y) + iϕ(x)ϕ(y)

∫
d4z LI(z)−

1

2!
ϕ(x)ϕ(y)

∫
d4zd4w LI(z)LI(w) + · · ·

}
|0⟩ . (188)

Here we have substituted in HI =
∫
d3z LI and combine the t′ integration with the z integration. The

first term just corresponds to DF (x− y). For the second, we write

⟨0|T

{
iϕ(x)ϕ(y)

∫
d4z LI(z)

}
|0⟩ = − iλ

4!
⟨0|T

{∫
d4z ϕ(x)ϕ(y) ϕ(z)ϕ(z)ϕ(z)ϕ(z)

}
|0⟩ . (189)

We can now apply Wick’s theorem to calculate this vev.

Exercise: Write down all 15 contractions explicitly to show the following

⟨0|T

{
iϕ(x)ϕ(y)

∫
d4z LI(z)

}
|0⟩ = − iλ

4!

(
3×DF (x− y)

∫
d4z DF (z − z)DF (z − z)

+ 12×
∫

d4z DF (x− z)DF (y − z)DF (z − z)
)
. (190)

We can visualise this using Feynman diagrams

⟨0|T

{
iϕ(x)ϕ(y)

∫
d4z LI(z)

}
|0⟩ =

∫
d4z

(
x y

z +
x y

z

)
. (191)

We usually define the symmetry factor, i.e. the 3 and 12 to be included in the diagram. In a Feynman
diagram like this, we have propagators (the lines of the diagram) and vertices (points where four lines
meet). The vertices are located at positions in spacetime that depend either on the process (x and y) or
are integrated over (z). The number of contractions that contribute can grow quite quickly.
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Exercise: Repeat the above for the λ2 term to show that

1

2!
⟨0|T

{
ϕ(x)ϕ(y)

∫
d4zd4w LI(z)LI(w)

}
|0⟩ = λ2

2!(4!)2

∫
d4zd4w

[(
4! DF (x− y)×DF (z − w)4

+ (4 · 3/2)2 · 2 DF (x− y)×DF (w − w)DF (z − z)DF (w − z)2

+ 3 · 3 DF (x− y)×DF (z − z)2DF (w − w)2
)

+

(
4 · 3 · 3 DF (x− z)DF (y − z)×DF (w − w)2DF (z − z)

+ (4 · 3)2 DF (x− z)DF (y − z) DF (z − w)2DF (w − w)
+ 4 · 4 · 3 · 3 DF (y − z)DF (z − z) DF (z − w) DF (w − w)DF (w − x)

+ 4 · 2 · 3 · 4 DF (y − z) DF (z − w)3 DF (w − x) + (w ↔ z)

)]
. (192)

We can express this using Feynman diagrams as

1

2!
⟨0|T

{
ϕ(x)ϕ(y)

∫
d4zd4w LI(z)LI(w)

}
|0⟩ = λ2

∫
d4zd4w

(

1

48
+

1

16
+

1

128
+

1

16

+
1

4
+

1

4
+

1

6

)
. (193)

Here we have written the symmetry factors explicitly even though we previously stated that we
consider them part of the diagram. This is for illustration purposes.

Disconnected pieces and the Gell-Mann-Low denominator
In (191) we encountered two types of Feynman diagrams: a connected diagram where all lines and dots are
connected; a disconnected diagram where a diagram was free-floating. Let us focus on the disconnected
diagram contribution which evaluated to

z =

∫
d4z DF (z − z)DF (z − z) ∼

∫
d4z (const.) ∼ volume of space time . (194)

Once again we find ourselves in a situation where our prediction includes the volume of space time which
is obviously infinite. For now let us just call this first disconnected piece V1, the next more complicated
disconnected piece is V2 etc. We will not really worry what these evaluate to because we will soon see
that they cancel.
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To see what happens, we start with the full series in λ

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩ ∼

( )
+

(
+

)

+

(
+ + + + · · ·

)

+

(
+ + +

+ + + + · · ·

)
+ · · ·

(195)

Note how in this expression we keep finding the same pieces, both for the connected part and the
disconnected ones. We will now try and exploit this structure by rearranging this infinite series by
collecting terms not by their power in λ but by their diagrammatic topology. This will lead to us
factoring our the connected pieces

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩ ∼

(
+ + + + · · ·

)

×

(
1 + ︸︷︷︸

V1

+ ︸︷︷︸
V2

+ ︸︷︷︸
V3

+ · · ·

+
1

2!

[ ]2
+

1

2!

[ ]2
+

[ ][ ]
+

[ ][ ]
+ · · ·

+
1

3!

[ ]3
+

1

3!

[ ]3
+

1

(1!)(2!)

[ ][ ]2
+ · · ·

)
(196)

=
(∑

connected
)
×
(
1 + V1 + V2 + V3 + · · ·+

1

2!
V 2
1 +

1

2!
V 2
2 + V1V2 + V2V3 + · · ·

+
1

3!
V 3
1 +

1

3!
V 3
2 +

1

(1!)(2!)
V1V

2
2 + · · ·

)
(197)

=
(∑

connected
)
×

∑
all {ni}

(∏
i

1

ni!
V ni
i

)
. (198)
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We can do one more step of rearranging

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩ ∼

(
+ + + + · · ·

)

×

(
1 + +

1

2!

[ ]2
+

1

3!

[ ]3
+ · · ·

)

×

(
1 + +

1

2!

[ ]2
+

1

3!

[ ]3
+ · · ·

)

×

(
1 + +

1

2!

[ ]2
+

1

3!

[ ]3
+ · · ·

)
(199)

=
(∑

connected
)
×
(
1 + V1 +

1

2!
V 2
1 + · · ·

)
×
(
1 + V2 +

1

2!
V 2
2 + · · ·

)
× · · · (200)

=
(∑

connected
)
×
∏
i

(∑
ni

1

ni!
V ni
i

)
. (201)

This can now be written in terms of an exponential, summing all disconnected diagrams to all orders in
λ

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩ ∼
(∑

connected
)
×
∏
i

exp(Vi) =
(∑

connected
)
× exp

(∑
i

Vi

)
. (202)

What we have calculated here is the numerator of the Gell-Mann-Low theorem

⟨0|T

{
ϕI(x)ϕI(y) exp

(
− i
∫ t

−t
dt′ H̃I(t

′)

)}
|0⟩ =

(
+ + + · · ·

)

× exp

(
+ + + · · ·

)
. (203)

We can now consider the denominator which has the same structure but no ϕ(x) and ϕ(y). We can use
the same logic to show that

⟨0|T

{
exp

(
− i
∫ t

−t
dt′ H̃I(t

′)

)}
|0⟩ = exp

(
+ + + · · ·

)
. (204)

Therefore, the disconnected contributions cancel and we are left with

⟨Ω|T
{
ϕ(x)ϕ(y)

}
|Ω⟩ = sum of all connected diagrams with two external points . (205)

Note that the diagrams we drew in (171) are not disconnected because they are still connected to some
external points and therefore do not factor out. This is why the disconnected diagrams are sometimes
called vacuum bubbles or vacuum-to-vacuum transitions.

Deriving Feynman diagrams like this is not very efficient. Instead, we usually go the other way around
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and draw all possible diagrams and then use Feynman rules in position space

For each internal line
x y

= DF (x− y) , (206a)

For each vertex z = −iλ
∫

d4z , (206b)

For each external line
x

= 1 , (206c)

Divide by the symmetry factor. (206d)

We obtain a factor 1/n! from the Taylor expansion which cancels with the n! ways of arranging the n
vertices. Further, there are n! ways to arrange the lines going into a vertex which cancels with the n!
in LI = λ/4!ϕ4 so that our vertex rule is just λ. After these factors are accounted for we usually still
overcounted the diagram. To avoid this, we add the diagram’s symmetry factor S which are for example
explicitly written in (193) Formally, the symmetry factor is S = |G| the order of the symmetry group G
of the diagram that keeps the external lines fixed. A more practical set of rules that will cover almost all
use cases is

� lines that start and end in the same vertex, add a factor of 2

� n propagators connecting the same two vertices, add a factor of n!

� if two vertices are equivalent, add another factor of 2

The rules as formulated above are valid in position space. Often it is more suitable to have them in
momentum space where we write the propagator DF as a Fourier transform (cf. (123))

DF (x− y) =
∫

d4p

(2π)4
1

p2 −m2 + iϵ
e−ip·(x−y) . (207)

We now assign a momentum p to a propagator and split the factor e−ip·(x−y) into both ends of the line.
This means that for internal vertices we now have

p1

p2

p3

p4

∼
∫

d4zeip1·zeip2·zeip3·zeip4·z = (2π)4δ(4)(−p1 − p2 − p3 − p4) . (208)

In other words, momentum is conserved at each vertex. With this, we now have our momentum-space
Feynman rules

For each internal line
p

=
i

p2 −m2 + iϵ
, (209a)

For each vertex = −iλ , (209b)

For each external line
x p

= e−ip·x , (209c)

Impose momentum conservation, (209d)

Integrate over unconstrained momenta

∫
d4p

(2π)4
, (209e)

Divide by the symmetry factor. (209f)
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Exercise: Calculate the symmetry factors of the following diagrams

S = 2 (210)

S = 16 (211)

S = 6 (212)

x y
S = 12 (213)

x y
S = 8 (214)

Exercise: Write down all diagrams that contribute to the four-point function ⟨Ω|T{ϕ1ϕ2ϕ3ϕ4}|Ω⟩
up to λ2 and calculate the amplitude for ϕ(p1)ϕ(p2)→ ϕ(p3)ϕ(p4).

At λ1 we have a single diagram

x1

x2

x3

x4

= −iλ× eip1x1eip2x2e−ip3x3e−ip4x4δ(4)(p1 + p2 − p3 − p4) (215)

At λ2, we have four interesting diagrams

x1

x2

x3

x4

= (−iλ)2
∫

d4k

(2π)4
1

k2 −m2 + iϵ

1

(k + p1 + p2)2 −m2 + iϵ
× delta & exp , (216)

x1

x2

x3

x4

= (−iλ)2
∫

d4k

(2π)4
1

k2 −m2 + iϵ

1

(k + p1 − p3)2 −m2 + iϵ
× delta & exp , (217)

x1

x2

x3

x4

= (−iλ)2
∫

d4k

(2π)4
1

k2 −m2 + iϵ

1

(k + p1 − p4)2 −m2 + iϵ
× delta & exp . (218)

There are also diagrams where a correction is applied to the external line

+ + + . (219)

We will discuss these momentarily.

Exercise: Consider the ϕ3 theory

L =
1

2
(∂µϕ)

2 − 1

2
m2µ2ϕ2 − λ

3!
ϕ3 . (220)
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Calculate the symmetry factor of the following diagram through the Wick theorem

. (221)

Convince yourself that its Feynman rules are the same as in ϕ4 except for the vertex

For each vertex = −iλ , (222)

Calculate ⟨Ω|T{ϕ1ϕ2ϕ3ϕ4}|Ω⟩ up to λ1.

3.6 Returning to the S matrix

To use our formalism to calculate S matrix elements we would have to repeat the derivation of the Gell-
Mann-Low theorem for states other than |Ω⟩. However, we had to use the fact that the vacuum is the
state with the lowest energy which will not be true for any state that contains particles we would like
to scatter. It is possible to rescue this argument but how to do this goes well beyond the scope of this
course. Instead, the following construction should motivate why we might think that we can calculate S
matrix elements using Feynman diagrams.

Consider the S matrix element (cf. (142)) between an outgoing state f (composed of n particles with
momenta p⃗i) and an incoming state i (composed of m particles with momenta q⃗i)

i⟨f |S|i⟩i = ⟨p⃗1 · · · p⃗n|S|q⃗1 · · · q⃗m⟩ ∝ ⟨p⃗1 · · · p⃗n|T

{
exp

(
− i
∫ t

−t
dt′ H̃I(t

′)

)}
|q⃗1 · · · q⃗m⟩ . (223)

The ∝ indicates that we have ignored the equivalent denominator of the Gell-Mann-Low formula (186) in
that hopes that it will cancel again if we only consider connected diagrams. Since the external states can
be expressed through field operators and the vacuum, we can make them part of the Wick contractions
that defined the Feynman diagrams.

However, this will lead to plenty of diagrams where nothing of interest happens like the ones in (171).
To avoid this, we define the interesting part of the S matrix

S = 1 + i(2π)4δ(4)(Pi − Pf )T , (224)

where T contains only the connected diagrams and the 1 all the cases where no interaction takes place.
Since our Feynman rules imply momentum conservation, we have made this explicit already here6.

There is one more restriction on the types of diagrams that enter T . Consider the following diagram
which is fully connected

p1

p2

p3

p4

∝ 1

p′2 −m2
δ(4)(p′ − p3) =

1

p23 −m2
=

1

0
, (225)

with the intermediary momentum p′. Momentum conservation forces p′ = p3 and because we want p3
to be on-shell, i.e. p23 = m2, we now have a singularity. This is quite a big problem. S will only make
sense if we exclude this type of diagram where a loop is attached to an external leg like this. One can
show that these types of diagrams are similar to the vacuum bubbles we have already excluded in (205).
Diagrams that do not have this problem are called amputated.

Let us summarise our achievement

⟨p⃗1 · · · p⃗n|T |q⃗1 · · · q⃗m⟩ =
∑(

amputated & connected Feynman diagrams
)
. (226)

There is one final subtly related to this that we will revisit later in Section A.

6Sometimes you will see this factor to be defined as part of the T matrix instead.
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4 Cross sections and decay rates

To be able to compare our calculated amplitudes to experimental data, we need to a bit more work. We
have (142)

Pi→f ∼
∣∣⟨f |S|i⟩|2 i̸=f= (

(2π)4δ(4)(Pi − Pf )
)2 ∣∣⟨f |T |i⟩∣∣2 . (227)

The squared delta function is a problem because we only need one of them to solve our integration; the
other delta function will then automatically lead to yet another δ(4)(0). However, we have dealt with
this problem before and know to write (2π)4δ(4)(0) = V with the volume of spacetime V . Therefore, we
instead consider the probability per volume P/V . We also need to keep in mind that the states require
a normalisation 1/

√
E. This leads to the probability density

dPi→f

V
= (2π)4δ(4)(Pi − Pf )

∣∣⟨f |T |i⟩∣∣2( f∏
n=1

d3pn
(2π)32En

)(
i∏

n=1

1

2En

)
. (228)

4.1 Two initial states: cross section

Many particle physics experiments are scattering experiments where we take two particles and collide
them. In analogy to classical scattering, we define the cross section of the scattering. Since we are working
in a quantum theory rather than a classical one, the cross section describes a probability rather than a
physical size.

Consider a cloud of particles of type a at rest with number density ρa. Now we shoot a bunch of
particles of (a potentially different) type b at the cloud (cf. Figure 3). Along the axis of collision, we
have a cross-sectional area A and bunch lengths la and lb. The cross section of the scattering is defined
through the number N of scattering events as

σ =
N

(ρala)(ρblb)A
= N

A

Na ·Nb︸ ︷︷ ︸
L−1

. (229)

Here we have also defined the total number of a (b) particles Na (Nb). The combination NaNb/A is
called the luminosity and it is the reason that the cross section σ is a useful quantity. If we were to
repeat our a-b scattering experiment at a different collider which has e.g. more particles in its beams, we
would see more events even though the underlying process has not changed. σ encodes the physics, L
the parameters of the experiment. This allows us to focus on two-particle scattering and set ρa = ρb = 1
even if the real beams may contain as many as 1011 particles (the beam intensity of the LHC beams).

For a 2→ f process of momenta pa, pb → p1, ..., pf , we have from (228)

dPa,b→f

V
=

1

(2Ea)(2Eb)
(2π)4δ(4)(Pi − Pf )

∣∣⟨f |T |a, b⟩∣∣2( f∏
n=1

d3pn
(2π)32En

)
. (230)

cloud of type abeam of type b

lalb

A

Figure 3: A beam of particles of type b is shot at a cloud of particles of type a. The beam has length lb
and the target la. The cross sectional area of the target being hit by the beam is A.
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Keep in mind that the volume here is the spacetime volume of the scattering, i.e. V = t · A · la. For a
single scattering, the probability P is the number of scattered particles. Therefore the cross section

dσ =
dPa,b→f

la lbA
=

dPa,b→f

V

t

lb
. (231)

Identifying lb/t as the velocity of the beam relative to our cloud of particles a, we can now write

dσ =
dPa,b→f

V |v⃗|
=

1

(2Ea)(2Eb)|v⃗|

(
f∏
n=1

d3pn
(2π)32En

)
(2π)4δ(4)

(
pa + pb −

f∑
n=1

pn

)
︸ ︷︷ ︸

dΦ2→f

∣∣⟨f |T |a, b⟩∣∣2︸ ︷︷ ︸
|M(a,b→f)|2

. (232)

We now need to convince ourselves that dσ is Lorentz invariant since we could otherwise stop a process
from happening simply by moving relative to it. We have already seen that the measure d3p/(2E) is
invariant, making the entire phase space dΦ Lorentz invariant. The matrix elementM(a, b→ f) is also
fine so that the remaining part is the flux factor EaEb|v⃗|. We an rewrite this in terms of invariants7

EaEb|v⃗| =
√
(pa · pb)2 −m2

am
2
b (233)

Example numbers from the LHC
When talking about luminosity, we either refer to the instantaneous luminosity L which is measured in
cm−2s−1 or the integrated luminosity

∫
L which is measured in fb−1. An instantaneous luminosity of

L = 1032 cm−2s−1 for an entire year corresponds to
∫
L = 3.15 fb−1.

In 2024, the integrated luminosity of the LHC was around
∫
2024

L = 122.6 fb−1. The LHC experiments
regularly publish plots that show the luminosity recorded as a function of time over the year. The current
version is reproduced in Figure 4. At the time of the Higgs discovery (summer 2012), we had only recorded
about 12 fb−1, slightly more than recorded in any given month. You can use the numbers for various cross
sections (e.g. σ(pp → X) ≈ 1014 fb or σ(pp → H) ≈ 5 × 104 fb) to find the number of events expected
per year. cf. Figure 5.

4.2 One initial state: decay rates

If we have only one particle in the initial state, the only interesting thing that can happen is that this
particle decays. We may wonder what the lifetime τ of this particle is or, if it has multiple possible decay
channels, what the relative probabilities between the channels is. To do this, we define the decay rate
Γ = 1/τ which will be larger for shorter-lived particles (i.e. those with a larger transition probability)

dΓ =
dPa→f

V
=

1

2M

(
f∏
n=1

d3pn
(2π)32En

)
(2π)4δ(4)

(
pa −

f∑
n=1

pn

)
︸ ︷︷ ︸

dΦ1→f

∣∣⟨f |T |a, b⟩∣∣2︸ ︷︷ ︸
|M(a→f)|2

, (234)

where we have used that in the rest frame of a the energy Ea =M

4.3 Examples

Let us consider a few example of this. We will use a modified version of the ϕ3 theory we discussed in
the previous section that contains two fields ϕ1 and ϕ2

L =
1

2
(∂µϕ1)(∂

µϕ1)−
1

2
M2ϕ21 +

1

2
(∂µϕ2)(∂

µϕ2)−
1

2
m2ϕ22 −

1

2!
λϕ1ϕ

2
2 . (235)

7Note that technically this is only invariant for boosts along the beam axis. For boosts along any other axis, it is not
invariant which fits well with our intuition of cross-sectional areas.
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The Feynman rules of this theory are

For each ϕ1-ϕ2-ϕ2 vertex = −iλ , (236)

For each internal ϕ1 line
p

=
i

p2 −M2 + iϵ
, (237)

For each internal ϕ2 line
p

=
i

p2 −m2 + iϵ
. (238)

We could have derived the Feynman rules using the Wick theorem as we did above. Alternatively, we
could follow the heuristic of taking a prefactor of −i, multiplying the coefficient of the fields (λ/2!) and
multiply with the symmetry factor (1! for the ϕ11 factor and 2! for the ϕ22 factor).

4.3.1 Decay process ϕ1 → ϕ2ϕ2

If we assume that M > 2m, the ϕ1 particle can decay into two ϕ2 particles. To do this, let us begin by
calculating the matrix elementM which is trivial in this case

M
(
ϕ1(P )→ ϕ2(p1)ϕ2(p2)

)
= = −iλ . (239)

The decay rate therefore is

Γ(ϕ1 → ϕ2ϕ2) =
1

2M

∫
(2π)4δ(4)

(
P − p1 − p2

) d3p1
(2π)32E1

d3p2
(2π)32E2

|M|2 (240)

=
1

2M

∫ (2π)δ
(
M − E1 − E2

)
2E1

d3p2
(2π)32E2

λ2 . (241)

As always we have Ei =
√
p⃗ 2
i +m2 and since p⃗1 = −p⃗2, we have E1 = E2. We can now write the d3p2

integration in spherical coordinates, i.e. d3p2 = |p⃗2|2d|p⃗2|dΩ

Γ(ϕ1 → ϕ2ϕ2) =
1

2M

∫
(2π)δ

(
M − 2E2

)
4E2

2

dΩ|p⃗2|2d|p⃗2|
(2π)3

λ2 . (242)

Since there is no angular dependence, we can solve the dΩ integral and obtain 4π. To solve the d|p⃗2|
integration, we can perform a substitution d|p⃗2| = dE2 × E2/

√
E2

2 −m2

Γ(ϕ1 → ϕ2ϕ2) =
λ2

8π

∫
dE2

E2

√
E2

2 −m2

M
δ(M − 2E2) =

λ2

16πM

√
1− 4m2/M2 . (243)

We can identify
√

1− 4m2/M2 as the velocity of one of the ϕ2 particles since it is defined as

β =
|p⃗1|
E1

=

√
1− m2

E2
1

=

√
1− 4m2

M2
, (244)

with E1 =M/2.

Exercise: Can you explain why we required M > 2m based on this answer? What happens to β
for M < 2m, for M = 2m or for M ≫ 2m?

The region M = 2m is referred to as the threshold where the decay is just about possible and the two
final-state particles are produced at rest.
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Exercise: The decay ϕ1 → ϕ2ϕ2ϕ2ϕ2 is also possible. How would you go about calculating this?
The first Feynman diagram would be

P

p1

p4

p2

p3
= (−iλ) i

(P − p4)2 −m2 + iϵ
(−iλ) i

(p2 + p3)2 −M2 + iϵ
. (245)

There are more diagrams due to the permutations of the outgoing particles. Convince yourself of the
above and calculate the full amplitude.

More generally, it is useful to keep ∫
dΦ2 =

∫
dΩ

1

16π2

|p⃗1|
Ecm

(246)

in mind. Here Ecm =M and the dΩ integral was trivial.

4.3.2 Scattering of ϕ2ϕ2 → ϕ2ϕ2

Let us now calculate the scattering of two ϕ2 particles. The amplitudeM contains three diagrams

M
(
ϕ2(p1)ϕ2(p2)→ ϕ2(p3)ϕ2(p4)

)
=

p1

p2

p1 + p2

p3

p4

+

p1 p3

p2 p4

p1 − p3 +

p1

p4p2

p3

p1 − p4

(247)

= (−iλ) i

(p1 + p2)2 −M2
(−iλ) + (−iλ) i

(p1 − p3)2 −M2
(−iλ) + (−iλ) i

(p1 − p4)2 −M2
(−iλ)

= −iλ2
(

1

s−M2
+

1

t−M2
+

1

u−M2

)
. (248)

Here we have defined the Mandelstam variables

s = (p1 + p2)
2 = (p3 + p4)

2 , t = (p1 − p3)2 = (p2 − p4)2 , u = (p1 − p4)2 = (p2 − p3)2 . (249)

Exercise: Use momentum conservation to show that s+ t+ u = 4m2.

The Lorentz-invariant phase space is calculated the same way as before∫
dΦ2→2 =

∫
d3p3

(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)
(
p1 + p2 − p3 − p4

)
=

∫
dΩ

1

16π2

|p⃗3|
Ecm

, (250)

with Ecm = E1 + E2. Unfortunately we now cannot replace dΩ = 4π because we still have an angular
dependency. To see why, let us write down explicit four vectors in the centre-of-mass frame where
p⃗1 + p⃗2 = 0. For simplicity, we align our coordinate system such that the beam axis is the z direction
and that the scattering takes place in the y-z plane

p1 =
(
E, 0, 0,+|p⃗1|

)
=

(
E, 0, 0,+

√
E2 −m2

)
, (251)

p2 =
(
E, 0, 0,−|p⃗2|

)
=

(
E, 0, 0,−

√
E2 −m2

)
, (252)

p3 =
(
E, 0,+sin θ|p⃗3|,+cos θ|p⃗3|

)
=

(
E, 0,+sin θ

√
E2 −m2,+cos θ

√
E2 −m2

)
, (253)

p4 =
(
E, 0,− sin θ|p⃗4|,− cos θ|p⃗4|

)
=

(
E, 0,− sin θ

√
E2 −m2,− cos θ

√
E2 −m2

)
. (254)
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Since E ≡ E1 =
√
|p⃗1|2 −m2 = E2. For the same reason, p⃗3 + p⃗4 = 0 and E3 = E4. The Mandelstam

variables are

s =
(
2E, 0, 0, 0

)2
= 4E2 = E2

cm , (255a)

t =
(
0, 0,− sin θ, (+1− cos θ)

)2
(E2 −m2) = −2(E2 −m2)(1− cos θ) , (255b)

u =
(
0, 0,+sin θ, (−1− cos θ)

)2
(E2 −m2) = −2(E2 −m2)(1 + cos θ) . (255c)

We can now write the differential cross section as

dσ =
1

(2E)2|v⃗|
dΩ

16π2

√
E2 −m2

2E
λ4
(

1

s−M2
+

1

t−M2
+

1

u−M2

)2

(256)

=
dΩ

64π2

λ4

E2(M2 − 4E2)2

(
14E4 − 2m4 + 4m2(2M2 − 3E2)− 3M4 + 2(m2 − E2)2 cos(2θ)

(2E2 − 2m2 +M2)2 − 4(m2 − E2)2 cos2 θ

)2

. (257)

If we set M = m = 0, we find a very short expression

dσ =
dΩ

1024π2

λ4

E6

(3 + cos2 θ)2

(1− cos2 θ)2
. (258)

What do we now do with this object? We can either visualise the differential distribution dσ/dΩ,
normally written as dσ/d(cos θ) or dσ/dθ. Alternatively, we could integrate over dΩ and obtain the full
cross section of this process occurring.

A few comments are in-order. From (255) it is clear that s = 4E2 ≥ 4m2 > 0 and t, u ≤ 0. This means
the second and third term in (256) will not be a problem as long M ̸= 0. However, s = M2 is allowed
and the cross section would explode if we picked this value of s. This is fixed by adding higher-order
corrections to the ϕ1 propagator, i.e.

+ + + · · · . (259)

Even though each term is progressively more suppressed by λ, the addition of more propagators 1/(s−M2)
makes up for this and we need to calculate infinitely many such insertions. We will come back to this in
Section 7 and Appendix A.

We should also note the behaviour of (258) for cos θ → ±1. This corresponds to a scattering angle
of θ = 0 or θ = π, i.e. when the outgoing particles follow the beam axis. Since the two ϕ2 particles are
indistinguishable, this just means that the particles pass each other without interacting. The divergence
we see here is to the fact that we have split the S matrix as S = 1 + T in (224). When we constructed
T we assumed that the initial and final state were different which is not the case for cos θ = ±1.
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5 Fermions and Photons

The scalar particles we have studied so far had spin 0. What about higher spins? One can show a
fundamental particle must be in the fundamental representation of the Lorentz group SO+(1, 3) which
limits possible spins to

� j = 0: Higgs boson but also e.g. pion, Helium-4, Carbon-12;

� j = 1/2: quarks and leptons but also e.g. proton, neutron;

� j = 1: vector bosons like photons, gluons, Z and W , but also deuteron, Nitrogen-14;

� j = 3/2: called a Rarita-Schwinger particle, no fundamental example has been discovered but
composite particles like Lithium-7 or the ∆++ exist;

� j = 2: any massless j = 2 particle can be shown to be a graviton of which we unfortunately do not
have a consistent theory.

5.1 Fermions

Since fermions are particles of matter, let us consider them first. The main problem with the KG equation
are its negative energy solutions. If viewed not in the context of a QFT but as a non-relativistic quantum
theory, this would mean that no ground state could exist since it could always have less energy. These
solutions appear because the KG is quadratic in ∂t. This in turn was a consequence of the on-shell
relation p2 = m2. Dirac’s approach was then to write the KG operator as a product

−(∂2 +m2) = (iγν∂ν +m)(iγµ∂µ −m) . (260)

If we therefore choose our differential equation to be

(iγµ∂µ −m)ψ = 0 , (261)

it is by construction linear in ∂t, manifestly Lorentz invariant and fulfils the on-shell condition. Unfortu-
nately, the γµ cannot be a mere number since we require

γµγν∂µ∂ν = ηµν∂µ∂ν . (262)

Note that this does not mean that γµγν = ηµν since the tensor ∂µ∂ν is symmetric under µ-ν exchange.
Instead, we can write with the anti-commutator {A,B} = AB +BA

γµγν∂µ∂ν =
1

2

(
γµγν + γνγµ

)
∂µ∂ν =

1

2
{γµ, γν}∂µ∂ν . (263)

This is now the defining property of the γ matrices

{γµ, γν} = 2ηµν . (264a)

To ensure that the Hamiltonian is self-adjoint, we also require the following normalisation(
γ0
)2

= 1 and
(
γk
)2

= −1 with k = 1, 2, 3 . (264b)

These properties are actually sufficient for anything we may want to use γ matrices for, even without
writing them down as explicit 4× 4 objects.

Note that γµ is a Lorentz vector, i.e. a list of four 4 × 4 matrices. This can be made a bit clearer
when using indices for this spinor space. For example with the identity matrix in spinor space I

(261) =

4∑
b=1

(iγµab −mIab)ψb = 0 , (265)

(268a) =

3∑
µ=0

4∑
b=1

γµabγµ,bc = 4 Iac , (266)

(268b) =

3∑
µ=0

4∑
b,c=1

γµabγ
ν
bcγµ,cd = −2γνad . (267)

We will usually not write spinor indices and reserve the · operator for a Lorentz or three-vector product.
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Exercise: Show the following identities

γµγµ = 4 , (268a)

γµγνγµ = −2γν , (268b)

γµγνγργµ = 4ηνρ , (268c)

γµγνγργσγµ = −2γσγργν . (268d)

For example

γµγµ = ηµνγ
µγν

∗
=

1

2
ηµν(γ

µγν + γνγµ) = ηµνη
µν = 4 , (269)

where we have used at ∗ that the η tensor is symmetric. For the next relation, we write using the
anti-commutator and the previous result

γµγνγµ = (2ηµν − γνγµ)γµ = 2γν − 4γν = −2γν . (270)

The others follow exactly the same way.

Exercise: Using the fact that tr(aA + bB) = atr(A) + btr(B) and that tr(A · B · · ·C · D) =
tr(D ·A ·B · · ·C), show that

tr(γµ) = 0 , (271a)

tr(γµ1 · · · γµk︸ ︷︷ ︸
odd

) = 0 , (271b)

tr(γµγν) = 4ηµν , (271c)

tr
(
γµγνγργσ

)
= 4
(
ηµνηρσ − ηµρηνσ + ηµσηνρ

)
. (271d)

We begin with

tr(γµ) =
1

−2
tr(γνγµγν) =

1

−2
tr(γνγ

νγµ) =
4

−2
tr(γµ) (272)

which can only be satisfied if the trace is zero. Similarly, we can show γ5 (cf. next section)

tr(γµ1γµ2 · · · γµn) = tr(γµ1γµ2 · · · γµnγ5γ5) = tr(γ5γµ1γµ2 · · · γµnγ5) = −tr(γµ1γ5γµ2 · · · γµnγ5)

= +tr(γµ1γµ2γ5 · · · γµnγ5) = (−1)ntr(γµ1γµ2 · · · γµnγ5γ5) . (273)

If n is odd, this means tr(· · · ) = −tr(· · · ) which is only satisfied if the trace vanishes. Next,

tr(γµγν) =
1

2

(
tr(γµγν) + tr(γνγµ)

)
=

1

2
tr
(
{γµ, γν}

)
= ηµνtr(1) , (274)

with tr(1) = 4.

Exercise: Finally, show that

(γµ)† = γ0γµγ0 . (275)
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We can write the Dirac equation (261) using a Hamiltonian

i
∂ψ

∂t
=
(
− iγ0γ⃗ · ∇⃗+ γ0m

)
︸ ︷︷ ︸

H

ψ . (276)

Since we want H = H†, we need (γ0γ⃗) and (γ0) the be self-adjoint as well, justifying (264b).

5.1.1 Pauli’s fundamental theorem and basis of γ matrices

The γ matrices are fully defined through (264), i.e. we may use any set of matrices that fulfil these
requirements. This means that if we have a different set of matrices (γ′)µ that also fulfil (264), they must
be related to γµ through a constant invertible matrix S

(γ′)µ = S−1γµS . (277)

This is called Pauli’s fundamental theorem. Its proof is not that important but it makes use of an
important fact: we can write any product of γ matrices using a basis of 16 = 4× 4 elements.

To pick these, it is customary to define a fifth γ matrix

γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγµγνγργσ , (278)

with the totally anti-symmetric tensor ϵµνρσ, defined to be ε0123 = 1.

Exercise: Show using the anti-commutation relations and the definition of γ5

(γ5)† = γ5 , (279a)

(γ5)2 = 1 , (279b)

{γ5, γµ} = 0 . (279c)

For example, for the anti-commutator

{γ5, γλ} = − i

4!
εµνρσ{γµγνγργσ, γλ} , (280)

we write

γµγνγργσγλ = γµγνγρ2ηλσ − γµγνγσ2ηλρ + γµγργσ2ηνλ − γνγργσ2ηµλ + γλγµγνγργσ . (281)

Therefore

{γ5, γλ} = −2i

4!
εµνρσ

(
γµγνγρηλσ − γµγνγσηλρ + γµγργσηνλ − γνγργσηµλ + γλγµγνγργσ

)
(282)

We can write any product of γ matrices using the following basis

Γ =
{

1︸︷︷︸
1

, γµ︸︷︷︸
4

, i2 [γ
µ, γν ]︸ ︷︷ ︸
6

, γ5︸︷︷︸
1

, γµγ5︸ ︷︷ ︸
4

}
. (283)

The numbers indicate that the number of basis elements of this form. We refer to these as scalar, vector,
tensor, pseudo-scalar and pseudo-vector respectively.

If we simultaneously transform the spinor ψ as ψ → S−1ψ, the Dirac equation transforms to

(iγ · ∂ −m)ψ → (iγ′ · ∂′ −m)ψ′ = (i(S−1γS) · ∂ −m)S−1ψ = (iγ · ∂ −m) (284)

This means physics will always be invariant under basis change.
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Even if the exact form of the γ matrices does not matter, it is sometimes helpful to have one

γ0 =

(
12×2 02×2

02×2 −12×2

)
, γi =

(
02×2 σi

−σi 02×2

)
, (285)

with the Pauli matrices σi

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (286)

5.1.2 Transformations of the Dirac equation

If we want to view the spinor ψ as physically meaningful, we need to understand how it transforms in
different frames. Consider therefore two frames described by x and x′ with (x′)µ = Λµνx

ν . If ψ(x) is a
solution in the x frame and ψ′(x′) is a solution in the x′ frame, we must have(

iγµ
∂

∂xµ
−m

)
ψ(x) =

(
iγµ

∂

∂(x′)µ
−m

)
ψ′(x′) = 0 . (287)

We can use (27) to transform the derivative

0 =

(
iγµ

∂

∂xµ
−m

)
ψ(x) =

(
i γµΛνµ︸ ︷︷ ︸

(γ′)ν

∂

∂(x′)ν
−m

)
ψ(Λ−1x′) . (288)

The new γ matrices (γ′)µ = Λµνγ
ν still need to fulfil (264a)

{(γ′)α, (γ′)β} = {Λαµγµ,Λ
β
νγ

ν} = ΛαµΛ
β
ν{γ

µ, γν} = ΛαµΛ
β
ν2η

µν = 2ηαβ , (289)

since (23) guarantees ηµνΛ
µ
ρΛ

ν
σ = ησρ. Pauli’s fundamental theorem proves the existence of a spinor

matrix S(Λ) such that

(γ′)µ = Λµνγ
ν = S(Λ)−1γµS(Λ) . (290)

Therefore,

0 =

(
iγµ

∂

∂xµ
−m

)
ψ(x) = S(Λ)−1

(
iγµ

∂

∂(x′)ν
−m

)
S(Λ)ψ(Λ−1x′) . (291)

If we left-multiply with S(Λ) and identify ψ′(x)′ = S(Λ)ψ(Λ−1x′), we arrive at

0 =

(
iγµ

∂

∂(x′)ν
−m

)
ψ′(x′) , (292)

the transformed Dirac equation (287)
To study S(Λ) consider an infinitesimal transformation Λ which should also be infinitesimal in S, i.e.

we have

Λµν = δµν + ωµν , (293)

S(Λ) = 1 + iωµνΣµν . (294)

Since ωµν + ωνµ = 0, we have the same anti-symmetry for Σ. Let us now calculate what happens to γ

Λµνγ
ν !
= S(Λ)−1γµS(Λ) , (295)

⇔ γµ + ωµνγ
ν +O(ω2) =

(
1− iωλρΣλρ

)
γµ
(
1 + iωλρΣλρ

)
+O(ω2) , (296)

⇔ 1

2
ωλρ

(
δµλγρ − δ

µ
ργλ

)
= ωµνγ

ν = iωλρ
(
γµΣλρ − Σλργ

µ
)
= iωλρ[γµ,Σλρ] (297)

⇔ 1

2

(
δµλγρ − δ

µ
ργλ

)
= i[γµ,Σλρ] . (298)
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This is satisfied by

Σλρ = −
i

8
[γλ, γρ] (299)

which can be integrated to

S(Λ) = exp
(
− i

8
ωµν [γµ, γν ]

)
for Λ ∈ SO+(1, 3) . (300)

Exercise: Show that

[γµ, γλγρ] = 2(δµλγρ − δ
µ
ργλ) , (301)

by using the anticommutator. Use this to show that (299) is a solution of (298).

The above discussion is only valid for proper transformations that have detΛ = +1. To also cover
improper transformations, consider

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (302)

This transformation flips the spatial components, i.e. it is a parity transformation. We need to fulfil

S(P )−1γ0S(P ) = γ0 and S(P )−1γiS(P ) = −γi . (303)

There are two possible choices for S(P )

S(P ) = S(P )−1 = ±γ0 (304)

correctly transforms γµ. When acting on the wavefunction, we can have two solutions as well

ψ(t, x⃗)→ ψ′(t, x⃗) = ±γ0ψ(t,−x⃗) . (305)

The sign is called intrinsic parity and only starts to matter once we consider system with changing
numbers of particles.

5.1.3 Solutions of the Dirac equation

To eventually construct a field theory, we will need a basis of solutions to the wave equation (261). As
always, we begin with a Fourier-transformation of ψ(x)

ψ(x) =

∫
d3p⃗

(2π)3
√

2Ep⃗

(
u(p)e−ip·x + v(p)eip·x

)
. (306)

Here the u and v objects are vectors in spinor space. They fulfil the momentum-space Dirac equation

(γ · p−m)u(p) = (γ · p+m)v(p) = 0 . (307)

In the restframe of the particle where p = (E, 0, 0, 0), we have

(γ0 − 1)u(0) = (γ0 + 1)v(0) = 0 . (308)

We can find explicit answers for the spinors using the explicit representation of (285)

u1(0) =


1
0
0
0

 , u2(0) =


0
1
0
0

 , v1(0) =


0
0
1
0

 , v2(0) =


0
0
0
1

 . (309)
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Note that we have not one but two solution for each direction of p. One can show that these correspond
to the two spin directions.

To turn these into solutions for u(p), we could perform a Lorentz boost. Alternatively, we can note
that

(γ · p−m)(γ · p+m) = (p2 −m2) , (310)

to write

ur(p) ∝ (γ · p+m)ur(0) , vr(p) ∝ (−γ · p+m)vr(0) . (311)

Exercise: (310) relies on the fact that (γ · a)(γ · a) = a2. Proof this.

As we will see, a suitable normalisation is

ur(p)
†γ0us(p) = δrs , vr(p)

†γ0vs(p) = −δrs , ur(p)
†γ0vs(p) = vs(p)

†γ0ur(p) = 0 . (312)

This leads to

ur(p) =
γ · p+m√
2m(m+ Ep⃗)

ur(0) , vr(p) =
−γ · p+m√
2m(m+ Ep⃗)

vr(0) . (313)

Further, we can show that (completeness relation)∑
r=1,2

ur(p)ur(p)
†γ0 = γ · p+m and

∑
r=1,2

vr(p)vr(p)
†γ0 = γ · p−m. (314)

5.1.4 Quantisation of the free Dirac field

To define the Lagrangian of the free Dirac field, it is helpful to first define the adjoint spinor

ψ̄ = ψ†γ0 . (315)

With this, the Lagrangian can be written as

L = ψ̄(iγµ∂µ −m)ψ , (316)

since it results in the correct Euler-Lagrange equation for ψ̄. To see this, we calculate

∂L
∂(∂µψ)

= iψ̄γµ and
∂L
∂ψ

= −ψ̄m , (317)

and write

0 = −iψ̄
←−
∂µγ

µ −mψ̄ . (318)

Here we have used the notation
←−
∂µ to indicate that the derivative is acting to the left rather than the

right. We can Hermitian-conjugate this to arrive at (261).
The assosciated Hamiltonian is

H =

∫
d3x H =

∫
d3x ψ̄(−iγ⃗ · ∇⃗+m)ψ . (319)

Since u and v are vectors, we will extend our Fourier-decomposition of the fermion field slightly to
split the creation and annihilation operators from the spinor vectors, i.e. we write

ψ(x) =

∫
d3p⃗

(2π)3
√
2Ep⃗

∑
r=1,2

(
ar(p⃗)ur(p)e

−ip·x + br(p⃗)vr(p)e
+ip·x

)
. (320)
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We have further flipped the propagation direction of the v spinors to ensure positive energy. Recall how
we used CCRs to quantise the KG field

[â(p⃗), â†(q⃗)] = (2π)3δ(3)(p⃗− q⃗) , (83a)

[â(p⃗), â(q⃗)] = [â†(p⃗), â†(q⃗)] = 0 . (83b)

Here we would have

[ar(p⃗), a
†
s(q⃗)] = [br(p⃗), b

†
s(q⃗)] = (2π)3δ(3)(p⃗− q⃗)δrs and all other commutators zero . (321)

However, this will lead to a contradiction. We can show that the Hamiltonian of this theory is

H =

∫
d3p

(2π)3
Ep⃗
∑
r

(
a†r(p⃗)ar(p⃗)− b†r(p⃗)br(p⃗)

)
. (322)

Since we can view a†rar and b†rbr as particle numbers for particles of type a and b, this would mean that
creating more b-type particles decreases the energy of the system.

If we instead swap b and b†

ψ(x) =

∫
d3p⃗

(2π)3
√
2Ep⃗

∑
r=1,2

(
ar(p⃗)ur(p)e

−ip·x + b†r(p⃗)vr(p)e
+ip·x

)
, (323)

ψ̄(x) =

∫
d3p⃗

(2π)3
√
2Ep⃗

∑
r=1,2

(
a†r(p⃗)ūr(p)e

+ip·x + br(p⃗)v̄r(p)e
−ip·x

)
, (324)

and chose anitcommutation relations

{ar(p⃗), a†s(q⃗)} = {br(p⃗), b†s(q⃗)} = (2π)3δ(3)(p⃗− q⃗)δrs and all other anticommutators zero , (325)

we would find

H =

∫
d3p

(2π)3
Ep⃗
∑
r

(
a†r(p⃗)ar(q⃗) + b†r(p⃗)br(p⃗)

)
. (326)

which means that both a† and b† create a particle of mass m2 = p2.

Exercise: Show (322) and (326).

Exercise: You may find the following quantum mechanics problem instructive. We normally
consider the bosonic harmonic oscillator defined as

HB =
ω

2
(a†a+ aa†) with [a, a†] = 1 , [a, a] = [a†, a†] = 0 . (327)

Now define the fermionic oscillator with

HF =
ω

2
(b†b− bb†) with {b, b†} = 1 , {b, b} = {b†, b†} = 0 . (328)

Write HF and HB in terms of number operators NF = b†b and NB = a†a. What are the allowed
eigenvalues of NF and NB?

You can also define a combined system H = HB + HF with |n⟩ = |nB⟩ ⊗ |nF ⟩ ≡ |nB , nF ⟩.
This system treats bosons and fermions the same and is therefore supersymmetric. Show that the
supercharge operator Q = ab† fulfils

{Q,Q} = {Q†, Q†} = 0 , ω{Q,Q†} = H , [Q,H] = [Q†, H] = 0 . (329)

Therefore, Q is a conserved quantity. Finally, apply Q|nB , nF ⟩ and explain what the operator does
to a fermion or boson.
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We can now define a few states. As before, we define |0⟩ as the state destroyed by a and b

ar(p⃗)|0⟩ = br(p⃗)|0⟩ = 0 . (330)

We can also define two different one-particles states

|p⃗, s,+⟩ =
√
2Ep⃗a

†
s(p⃗)|0⟩ and |p⃗, s,−⟩ =

√
2Ep⃗b

†
s(p⃗)|0⟩ . (331)

These states are properly normalised such that

⟨p⃗, s,±|q⃗, r,±⟩ = 2Ep⃗ (2π)
3δ(3)(p⃗− q⃗)δrs . (332)

5.1.5 Charge of the Dirac field and bilinear forms

The Dirac Lagrangian (316) has a symmetry ψ → eiαψ which means that there must be conserved
current. This current is

jµV = ψ̄(x)γµψ(x) . (333a)

It is customary to also define

jS = ψ̄(x)ψ(x) , (333b)

j5 = ψ̄(x)γ5ψ(x) , (333c)

jµ5V = ψ̄(x)γ5γµψ(x) . (333d)

It is easy to see that jµV and jµ5V are conserved

∂µj
µ
V =

(
∂µψ̄

)
γµψ + ψ̄γµ

(
∂µψ

)
= (imψ̄)ψ + ψ̄(−imψ) = 0 , (334)

Exercise: Show that j5V is conserved as well as long as m = 0.

Let us also see how j transforms under Lorentz transformation. For example,

jS → ψ̄′(x′)ψ′(x′) = ψ̄(x)S(Λ)−1S(Λ)ψ(x) = ψ̄(x)ψ(x) = jS(x) . (335)

Exercise: Use the proof to show that

jµV (x)→ (j′V )
µ(x′) = Λµνj

ν
V (x) , (336)

and similarly for j5 and jµ5V .

The effect of parity is slightly more interesting. For example,

jS → ψ̄′(x′)ψ′(x′) = ψ̄(x)S(P )−1S(P )ψ(x) = ψ̄(x)ψ(x) = jS , (337)

j5 → ψ̄′(x′)(γ′)5ψ′(x′) = ψ̄(x)S(P )−1γ5S(P )ψ(x) = −ψ̄(x)γ5ψ(x) = −j5 , (338)

and similarly for the vector currents. We have used that

S(P )−1γ5S(P ) = γ0γ5γ0 = −γ0γ0γ5 = −γ5 . (339)

This is the original of the labels we have used for the different basis elements in (283): since jS (jV )
transforms like a Lorentz scalar (Lorentz vector) we call it a scalar (vector) current. The “pseudo” prefix
indicates that the current picks up a sign under parity conservation, the same way that e.g. the angular
momentum L⃗ = x⃗× p⃗ does.
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Classically, the vector current jV corresponds to the electromagnetic current with the charge density
as ρ = j0V . Let us calculate this current for our QFT

Q =

∫
d3x ρ(x) =

∫
d3x ψ†(x)ψ(x) (340)

=

∫
d3x d3q⃗ d3p⃗

(2π)6
√

2Ep⃗2Eq⃗

∑
r,s

(
a†r(p⃗)ur(p)

†e+ip·x + br(p⃗)vr(p)
†e−ip·x

)(
ar(p⃗)ur(p)e

−ip·x + b†r(p⃗)vr(p)e
+ip·x

)
(341)

=

∫
d3p⃗

(2π)3

∑
r

(
a†r(p⃗)ar(p⃗) + br(p⃗)b

†
r(p⃗)

)
=

∫
d3p⃗

(2π)3

∑
r

(
a†r(p⃗)ar(p⃗)− b†r(p⃗)br(p⃗)

)
, (342)

where we have dropped yet another
∫
d3p1 constant in the last step. This proves that the particles

created by a† have charge Q = +1 and the those created by b† have Q = −1 Therefore, we call the former
particles and the latter antiparticles.

Exercise: Show the above.

5.1.6 Dirac propagator

Finally, we should calculate the propagator of a fermion. To do this, we simply write

⟨0|ψa(x)ψ̄b(y)|0⟩ =
∫

d3p

(2π)32Ep⃗
eip·(x−y)

∑
r

ur(p)aūr(p)b︸ ︷︷ ︸
(γ·p+m)ab

, (343)

⟨0|ψ̄b(y)ψa(x)|0⟩ =
∫

d3p

(2π)32Ep⃗
eip·(y−y)

∑
r

vr(p)av̄r(p)b︸ ︷︷ ︸
(γ·p−m)ab

. (344)

Keep in mind that ψ and ψ̄ are operator-valued vector fields and therefore have spinor indices a and b,
not to be confused with the operators a and b. By writing pµ → i∂µ, we can pull the Dirac structure out
and are left with D(x− y) of (116)

⟨0|ψa(x)ψ̄b(y)|0⟩ = +(iγ · ∂x +m)abD(x− y) , (345)

⟨0|ψ̄b(y)ψa(x)|0⟩ = −(iγ · ∂x −m)abD(y − x) . (346)

Similarly, the delayed Green’s function can be written as

SabR (x− y) = θ(x0 − y0)⟨0|{ψa(x), ψ̄b(y)}|0⟩ = (iγ · ∂x +m)abDR(x− y) . (347)

Exercise: Verify that SR is indeed a Green’s function of the Dirac operator i∂ −m.

For the Fourier-transformed Green’s function, we find

S̃R(x− y) =
i(γ · p+m)

p2 −m2
=

i

γ · p−m
. (348)

We can use the same constructions to define the Feynman propagator

SF (x− y) =
∫

d4p

(2π)4
i

γ · p−m+ iϵ
e−ip·(x−y) = ⟨0|Tψ(x)ψ̄(y)|0⟩ . (349)
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5.2 Vector fields

The last particle we will consider is the photon, i.e. the particle of the electromagnetic field. The classical
Lagrangian is just

L = −1

4
FµνFµν with Fµν = ∂µAν − ∂νAµ . (350)

Fµν is called the field-strength tensor and Aµ the vector potential. We will not discuss how to quantise
this field because A is a gauge field which makes canonical quantisation much more complicated. This
is because the conjugate momentum to A0 is zero as L does not contain Ȧ0 (the term ∂0A0 would be
in F 00 = ∂0A0 − ∂0A0 = 0). The way to circumvent this problem is add a gauge-fixing term to L that
forces a specific gauge, e.g. Lorentz gauge, i.e. ∂µA

µ = 0, in which we can write down CCRs

[Aµ(x), Ȧν(y)] = −iηµνδ(x− y) . (351)

This is very similar the KG field and we can almost proceed along the same lines8. The photon field can
be written as

Aµ(x) =

∫
d3p

(2π)3
√

2Ep⃗

∑
λ

ϵµλ(p)
[
ap,λe

ip·x + a†p,λe
−ip·x

]
. (352)

Here we use λ to sum over polarisations and ϵ to denote the polarisation vector itself. Naively we would
expect two polarisations. However, the gauge fixing leads to two unphysical polarisations that we also
need to sum over. Like the u and v spinors, the polarisation vector ϵ has a complenetess relation∑

λ

ϵµλ(p)ϵ
∗ν
λ (p) = −ηµν . (353)

The Feynman propagator of this theory is

Dµν
F (x− y) =

∫
d4p

(2π)4
ηµν

p2 + iϵ
e−ip·(x−y) . (354)

8There is one more problem related to the fact that states created by a0† have negative norm.
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6 Quantum electrodynamics

We can finally write down and work with the QED Lagrangian. We want our theory of electrodynamics
to include electrons and photons, i.e. our free Lagrangian will be the sum of (316) and (316)

L0 = ψ̄(iγ · ∂ −m)ψ − 1

4
FµνFµν . (355)

To achieve interactions between the two types of particles, recall the concept of minimal coupling: in
classical field theory one couples a particle to the electromagnetic field by shifting its momentum p →
p− qA. The quantum equivalent of this is shift

i∂µ → i∂µ − qAµ ≡ iDµ . (356)

The object Dµ is usually called the gauge-covariant derivative for reasons we will see shortly. The means
the QED Lagrangian can be written as

L = ψ̄(iγ ·D −m)ψ − 1

4
FµνFµν = L0 − eψ̄γµψAµ . (357)

The simplicity of this results is one of the most remarkable features of modern physics. It accurately
describes nature except for gravity and nuclear phenomena which require the strong and weak nuclear
forces. However, both of these have the same structure (albeit with a different gauge group) and their
fields can be absorbed into F and D.

We can write down Feynman rules for this theory

For each internal fermion a
p

b =

(
i

γ · p−m+ iϵ

)
ab

, (358)

For each internal photon ν
p

µ =
−iηµν
p2 + iϵ

, (359)

For each vertex µ

a

b

= ieγµab , (360)

For each external photon µ
p

= ϵ∗µ(p) (final) , (361)

For each external photon µ
p

= ϵµ(p) (initial) , (362)

For each external fermion a
p

=
(
ūs(p)

)
a

(final) , (363)

For each external fermion a
p

=
(
us(p)

)
a

(initial) , (364)

For each external antifermion a
p

=
(
vs(p)

)
a

(final) , (365)

For each external antifermion a
p

=
(
v̄s(p)

)
a

(initial) . (366)

We use the black blob to indicate the rest of the process and the direction of the momentum arrow
relative to it to indicate incoming or outgoing particles.

We have used the spinors u and v to denote external fermion fields and the polarisation vector ϵ to
denote external photons. For fermions, we have to keep track of both the flow of momentum and the
spinor flow which is what is indicated by the arrow on the line. For the propagator, we have assumed
they are aligned, otherwise we pick up a relative sign between γ · p and m.

Further note that we will drop the spinor indices in the future and often just write e.g.

ū(p)γµv(q) ≡
[
ūsp(p)

]
a

[
γµ
]
a,b

[
vsq (q)

]
b
. (367)
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6.1 Gauge structure

Note that (357) has a gauge symmetry

ψ(x)→ eiα(x)ψ(x) while Aµ(x)→ Aµ −
1

q
∂µα(x) . (368)

The gauge-covariant derivative transforms like the field under this symmetry

Dµψ(x)→
(
∂µ + ieAµ − i(∂µα)

)
eiαψ(x) = eiα

(
∂µ + ieAµ

)
ψ(x) = eiαDµψ(x) , (369)

leaving L invariant. This means it would have been possible to state L based on the requirement that
the gauge symmetry holds without thinking about minimal coupling at all!

The photon as a consequence of local symmetry
In fact, we can go further and derive the complete Lagrangian, including the photon field, from the fact
that

L = ψ̄(iγ · ∂ −m)ψ (370)

should be invariant under local gauge transformation

ψ(x)→ eiα(x)ψ(x) . (371)

The mass term is obviously invariant but what about the derivative? Due to the gauge symmetry, the
derivative ∂µ no longer has any geometric meaning since the phase α(x) could mess things up. Let us
therefore define a new derivate Dµ which compares two nearby points along a direction n̂µ

n̂µDµψ = lim
ϵ→0

ψ(x+ ϵn̂)− U(x+ ϵn̂, x)ψ(x)

ϵ
. (372)

Here we had to introduce a new object, U , which for the normal derivative ∂µ is just U = 1 but accounts
for the change α. For L to be invariant, we need this new derivative to transform like the field itself, i.e.

n̂µDµψ → lim
ϵ→0

eiα(x+ϵn̂)ψ(x+ ϵn̂)− U ′(x+ ϵn̂, x)eiα(x)ψ(x)

ϵ

!
= eiα(x)n̂µDµψ . (373)

The only way to more this work generally is if U transforms as

U(y, x)→ U ′(y, x) = eiα(y)U(y, x)e−iα(x) . (374)

Then we have

n̂µDµψ → lim
ϵ→0

eiα(x+ϵn̂)
ψ(x+ ϵn̂)− U(x+ ϵn̂, x)ψ(x)

ϵ
= eiα(x)n̂µDµψ . (375)

Taylor-expanding U gives us with U(x, x) = 1

U(x+ ϵn̂, x) = 1− iϵn̂µ(eAµ(x)) +O(ϵ2) . (376)

Here we had to introduce a field Aµ that is the derivative of U as well as an arbitrary constant e. It is
easy to see that Aµ transforms as required and it is no surprise that it will turn into the photon field.

We can now concatenate four comparison operations into a small square

U(x) = U(x, x+ ϵn̂)U(x+ ϵn̂, x+ ϵn̂+ ϵm̂)U(x+ ϵn̂+ ϵm̂, x+ ϵm̂)U(x+ ϵm̂, x) . (377)

It is easy to see that U(x) is invariant under the transformation. Starting from

U(x, y) = exp
(
− ieA

(x+ y

2

)
· (x− y) +O

(
(x− y)3

))
, (378)
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we find

U(x) = exp

[
− ieϵ

(
− n̂ ·A

(
x+ n̂ ϵ2

)
− m̂ ·A

(
x+ n̂ϵ+ m̂ ϵ

2

)
+ n̂ ·A

(
x+ m̂ϵ+ n̂ ϵ2

)
+ m̂ ·A

(
x+ m̂ ϵ

2

))]
= exp

[
− ieϵ

(
∂m̂(n̂ ·A)− ∂n̂(m̂ ·A)

))
. (379)

This proofs that Fµν and any functions that depend on Fµν are invariant. However, Aµ itself is not
invariant meaning that a mass term like mγ AµA

µ would not be allowed. This is the reason that the
photon is massless.

You may now wonder about the Z and W bosons. The same argument still applies and we cannot
write down a mass for them. In the Standard Model, their masses are dynamically generated through the
Higgs mechanism. Basically, the theory contains a scalar field ϕ whose kinetic term includes a covariant
deriviative that couples it dynamically to the W and Z bosons. Uniquely among all particles, this field
has a non-zero vev meaning that W and Z get a dynamically generated mass.

6.2 Recipe for evaluations

The following is a rough recipe for evaluating Feynman diagrams. We will shortly discuss each step in
an example but it may be convenient to have it all in one place. To calculate an amplitude,

1. draw all the Feynman diagrams.

2. assign momenta to all edges and Lorentz indices to all photon vertices.

3. pick the end of any fermion line and follow the arrow backwards, evaluating as you go.

4. multiply in the polarisation tensors for any external photons and propagators for each internal
photon.

5. contract any open index

6. if your diagram has any loops, integrate over the unconstrained momenta. If you have any internal
fermion loops, calculate the trace over their gamma matrices.

7. you now have the amplitudeM.

To calculate a cross section,

8. square the amplitude as |M|2 =M†×M. Make sure to rename any indices to avoid collisions. To
calculateM†, you can use the fact that (A ·B)† = B†A† and

u† = u†γ0γ0 = ūγ0 and ū† =
[
u†γ0

]†
=
[
γ0
]†
u = γ0u , (380)

and similarly for v. Further,

(γµ)† = γ0γµγ0 . (275)

As we will see, this just amounts to reversing the spin line.

9. if you calculate unpolarised scattering, sum over final-state and average over initial-state polarisa-
tions. For this, the completeness relations (314) and (353) will be helpful∑

r=1,2

ur(p)ūr(p) = γ · p+m,

∑
r=1,2

vr(p)v̄r(p) = γ · p−m, (314)

∑
λ

ϵλ,µ(p)ϵ
∗
λ,ν(p) = −ηµν . (353)
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10. for fermions, this will result in a trace of γ matrices (see below). Evaluate this trace using trace
identities (271)

tr(γµ) = 0 ,

tr(γµ1 · · · γµk︸ ︷︷ ︸
odd

) = 0 ,

tr(γµγν) = 4ηµν ,

tr
(
γµγνγργσ

)
= 4
(
ηµνηρσ − ηµρηνσ + ηµσηνρ

)
. (271)

11. use (232) or (234) to relate this to the cross section or decay rate

dσ =
1

(2Ea)(2Eb)|v⃗|

(
f∏
n=1

d3pn
(2π)32En

)
(2π)4δ(4)

(
pa + pb −

f∑
n=1

pn

)
︸ ︷︷ ︸

dΦ2→f

|M|2 , (232)

dΓ =
1

2M

(
f∏
n=1

d3pn
(2π)32En

)
(2π)4δ(4)

(
pa −

f∑
n=1

pn

)
︸ ︷︷ ︸

dΦ1→f

|M|2 . (234)

12. integrate over phase space.

6.3 A simple process ee→ µµ

Let us calculate our first real process, ee→ µµ. There is just a single s-channel diagram contributing so
Step 1 and 2 are very simple

M =

p1

p2

p3

p4

µ ν

p1 + p2

. (381)

We have to apply Step 3 twice, once for the muon and once for the electron. After Step 5, we have

M =
[
v̄s2(p2)

(
ieγµ

)
us1(p1)

] −iηµν
(p1 + p2)2 + iϵ

[
ūs3(p3)

(
ieγν

)
vs4(p4)

]
(382)

=
ie2

(p1 + p2)2 + iϵ

[
v̄s2(p2)γ

µus1(p1)
][
ūs3(p3)γµvs4(p4)

]
. (383)

We can now square this object

|M|2 =
e4[

(p1 + p2)2
]2 [v̄s2(p2)γµus1(p1) ūs3(p3)γµvs4(p4)]†[v̄s2(p2)γνus1(p1) ūs3(p3)γνvs4(p4)] . (384)

Let us first work on the first bracket [· · · ]† and use that[
· · ·
]†

=
[
us1(p1)

]†[
γµ
]†[
v̄s2(p2)

]† [
vs4(p4)

]†[
γµ
]†[
ūs3(p3)

]†
(385)

= ūs1(p1)γ
0 γ0γµγ0 γ0vs2(p2) v̄s4(p4)γ

0 γ0γµγ
0 γ0us3(p3) (386)

= ūs1(p1)γ
µvs2(p2) v̄s4(p4)γµus3(p3) . (387)

This means we now have after re-bracketing things

|M|2 =
e4[

(p1 + p2)2
]2 [ūs1(p1)γµvs2(p2)v̄s2(p2)γνus1(p1)][v̄s4(p4)γµus3(p3)ūs3(p3)γνvs4(p4)] . (388)
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Let us look at one of those, e.g. the first one where we have vs2 v̄s2 . If we sum over the polarisation states,
i.e. calculate v1v̄1 + v2v̄2, we can write this using the completeness relation as γ · p2 −m.∑

s1,s2

[
· · ·
]
=
∑
s1

ūs1(p1)γ
µ
(
γ · p2 −m

)
γνus1(p1) (389)

To make use of this also for s1, remember that the bracket is a number under spinor, i.e.

ū(p1) · · ·u(p1) = tr
[
ū(p1) · · ·u(p1)

]
= tr

[
u(p1)ū(p1) · · ·

]
= tr

[(
γ · p1 +m

)
· · ·
]
. (390)

This is sometimes referred to the Casimir trick and it is essential to calculating matrix elements with
traces. Therefore, ∑

s1,s2

[
· · ·
]
= tr

[(
γ · p1 +m

)
γµ
(
γ · p2 −m

)
γν
]
. (391)

We now can expand and calculate this trace∑
s1,s2

[
· · ·
]
= p1,ρp2,σtr

[
γργµγσγν

]
−m tr

[
γ · p1 γµ γν

]
+m tr

[
γµ γ · p2 γν

]
−m2tr

[
γµγν

]
(392)

= p1,ρp2,σ4
(
ηρµησν − ηρσηµν + ηρνηµσ

)
−m24ηµν

= 4pµ1p
ν
2 + 4pν1p

µ
2 − 4(p1 · p2 +m2)ηµν (393)

Doing the same for the other bracket, we have∑
s3,s4

[
· · ·
]
= 4p3,µp4,ν + 4p3,νp4,µ − 4(p3 · p4 +M2)ηµν . (394)

and with s = (p1 + p2)
2 and t = (p1 − p3)2∑

si

|M|2 =
16q4[

(p1 + p2)2
]2 [pµ1pν2 + pν1p

µ
2 − (p1 · p2 +m2)ηµν

][
p3,µp4,ν + p3,νp4,µ − (p3 · p4 +M2)ηµν

]
(395)

=
8e4

s2

(
2m4 + 4m2

(
M2 − t

)
+ 2M4 − 4M2t+ s2 + 2st+ 2t2

)
, (396)

where we have used that ηµν ηµν = 4.
To simplify the discussion of the cross section, let us set m = 0 (high energy limit) and write t in

terms of cos θ (cf. (255b))

t = (p1 − p3)2 =
s

2

(
− 1 + β2

2
+ β cos θ

)
with β =

√
1− 4M2

s
(397)

the velocity of the muon. Now the matrix element squared is∑
si

|M|2 = 4q4
(
2− (1− cos2 θ)β2

)
. (398)

Since we have to average over 2× 2 incoming spins, the four cancels. The cross section is

dσ

dΩ
=
α2

4s
β
(
2− (1− cos2 θ)β2

)
. (399)

In the high-energy limit, M = 0 or β = 1, this is

dσ

dΩ
=
α2

4s
(1 + cos2 θ) . (400)

At this point, there are a number of exercises you can do. In order of increasing complexity.
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Exercise: Calculate dσ/dt for eµ→ eµ scattering. The amplitude squared is

∑
|M|2 =

8e4

t2

(
2m4 + 2M4 + 4m2(M2 − s)− 4M2s+ 2s2 + 2st+ t2

)
, (401)

and the cross section is

dσ

dt
= 4πα2 (M

2 +m2)2 − su+ t2/2

t2λ
, (402)

with λ = m4 − 2m2M2 +M4 − 2m2s− 2M2s+ s2.

Exercise: Calculate the cross section for ee→ γγ. The amplitude can be written down as

M = v̄(p2)(−ieγµ)
i

γ · (p1 − p4)−m
(−ieγν)u(p1) ϵ∗µ(p3)ϵ∗ν(p4)

+ v̄(p2)(−ieγν)
i

γ · (p1 − p3)−m
(−ieγµ)u(p1) ϵ∗µ(p3)ϵ∗ν(p4) .

(403)

Exercise: Calculate the cross section dσ/dt for e+e− → e+e−. We find

∑
|M|2 = 8e4

(
8m4 − 8m2s+ 2s2 + 2st+ t2

t2
+

8m4 + s2 − 8m2t+ 2st+ 2t2

s2
+

2(s+ t)2 − 8m4

st

)
.

(404)

Exercise: Write down, but do not calculate, the amplitudes at O(e4) for ee→ µµ.
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ℜk0

ℑk0

+
√
k⃗2 −m2 − iϵ

−
√
k⃗2 −m2 + iϵ

Figure 6: The contour of the Wick rotation

7 Higher orders

So far we have only calculated observables at the first order in perturbation theory. This is usually fine
to get a rough idea of the cross section but especially in QCD where αs ∼ 0.1, higher-order corrections
can be very large (up to 100%). If we want to do any kind of precision measurement, either at the LHC
or elsewhere like the anomalous magnetic moments from the abstract, we need more precision. Luckily,
we have the tools to do this by simply drawing more complicated Feynman diagrams.

Consider for example the first correction to the ϕ propagator in ϕ4 (cf. (191))

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩ = + +O(λ2) (405)

=
1

p2 −m2 + iϵ
+

1

p2 −m2 + iϵ

λ

2

∫
d4k

(2π)4
i

k2 −m2 + iϵ

1

p2 −m2 + iϵ
+O(λ2) .

(406)

Let us focus on the integral. To calculate it, we should first try to replace the integral over the
Minkowskian momentum k into a Euclidean one. We currently have k2 = (k0)2 − k⃗2. If we could
replace k0 → ik4, we have instead

k2 = (k0)2 − k⃗2 → −(k4)2 − k⃗2 ≡ −k2E , (407)

d4k = dk0d3k⃗ → id4kE . (408)

kE is now a normal Euclidean vector that integrate normally. By looking at the integration counter
shown in Figure 6, we can see that this does not change the integral. The poles of the k0 integration

are at k0 = ±
√
k⃗2 +m2 ∓ iϵ in the top-left and lower-right quadrant. This means the integral over the

whole contour vanishes

0 =

∮
dk0 =

(∫ ∞

−∞
+

∫ i∞

−i∞
+arcs

)
. (409)

Assuming the arcs vanish, we can write∫
d4k

(2π)4
1

k2 −m2 + iϵ
= −i

∫
d4kE
(2π)4

1

k2E +m2
. (410)

This procedure is called Wick rotation.
Before we start calculating, let us just look at the integral. If k ≫ m, the integral will scale like

k4E/k
2
E ∼ k2E → ∞, i.e. the integral is divergent! What does this mean for the whole concept of QFT?
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category example counter-example

connected

amputated

p1

p2

p3

p4

1PI

Figure 7: Some example diagrams that are connected or unconnect, amputated or non-amputated, 1PI
or non-1PI.

If higher-order terms can diverge, the λ suppression does not really matter and we loose all predictive
power.

Before we continue, we should introduce one more item of terminology. We already know how to
classify by connected vs. disconnected and by amputated vs. non-amputated. Now we introduce one-
particle irreducible (1PI) diagrams that cannot by split into two diagrams by cutting a single line. For
an example of the three categorisation, see Table 7.

7.1 Regularisation

To fix this problem, we first need to make it manifest. This means we need to introduce some way of
parametrising the problem through a process called regularisation that we have encountered before. In
the following section we will concurrently develop two regularisation techniques: cut-off regularisation and
dimensional regularisation (dimreg). The former is conceptually easier to understand but very difficult
to implement in practice. The latter may sound a bit more abstract and esoteric but is how almost all
modern calculations are carried out.

Additionally to ⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩, we will also calculate the four-point function

⟨p4p3|T |p2p1⟩
∣∣∣
1L,p=0

= + permutations = (−i)(−iλ)2 3
2

∫
d4k

(2π)4
i2

(k2 −m2 + iϵ)2
(411)

7.1.1 Cut-off regularisation

Since our problem is due to k being very large, let us just truncate the integral at some large value Λ.
We can now simply write

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩
∣∣∣
1L

=
−λ
32π4

∫
Λ

1

k2E +m2
=
−λ
16π2

∫ Λ

0

dk
k3

k2 +m2
=
−λ
32π2

(
Λ2 −m2 log

m2 + Λ2

m2

)
.

(412)

Expanding this in Λ2/m2, we find

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩
∣∣∣
1L

= −m
2λ

32π2

(
Λ2

m2
− log

Λ2

m2

)
+O

(
(Λ/m)0

)
. (413)

This does not solve the problem but makes it explicit enough that we can talk about it.

Exercise: Calculate the other process to show that

⟨p4p3|T |p2p1⟩
∣∣∣
1L,p=0

=
3λ2

32π2
log

Λ2

m2
(414)
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7.1.2 Dimensional regularisation

A big downside of cut-off regularisation is that it breaks Lorentz invariance until we set Λ→∞. Combined
with the fact that it makes integrals more complicated, it is no surprise that it is rarely used in practical
calculations. Instead, we shift the spacetime dimension away from four, i.e. we work in d = 4 − 2ϵ
dimensions. This can be formalised but what matters for us is that it regulates the divergences. We write

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩
∣∣∣
1L

= λ

∫
ddk

(2π)d
i

k2 −m2
= −λ

∫
ddkE
(2π)d

1

k2E +m2
= −λ

∫
dΩ(d)

(2π)d
dk

kd−1

k2 +m2
. (415)

The d-dimensional spherical integral can be solved as∫
dΩ(d) =

2πd/2

Γ(d/2)
. (416)

Proof
Consider the following trick that uses the normalisation of the Gaussian distribution

(
√
π)d =

(∫
dx e−x

)d
=

∫
ddx e−x⃗

2

=

∫
dΩ(d)

∫ ∞

0

dx xd−1e−x
2

=

∫
dΩ(d) 1

2

∫ ∞

0

dy yd/2−1e−y =

∫
dΩ(d) 1

2
Γ(d/2) , (417)

with y = x2.

We now have

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩
∣∣∣
1L

= − λ

(4π)d/2
Γ
(
1− d

2

)
(m2)d/2−1 . (418)

Since this effectively changes the dimension of the coupling or the action, it is customary to add a factor
µ2ϵ

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩
∣∣∣
1L

= −m2
( µ2

m2

)ϵ λ

(4π)2−ϵ
Γ(ϵ− 1) =

m2λ

16π2

1

ϵ
+O(ϵ0) . (419)

Once again, this does not solve our problem but it makes it manifest as a pole in 1/ϵ.

Exercise: Show that in dimreg

⟨p4p3|T |p2p1⟩
∣∣∣
1L,p=0

=
−3λ2

(4π)2−ϵ
Γ(2− ϵ)Γ(ϵ− 1)

Γ(1− ϵ)

( µ2

m2

)ϵ
=

3λ2

16π2

1

ϵ
+O(ϵ0) . (420)

7.2 Renormalisation

Now that we have the divergences explicit, we can think about fixing them. So far we have just assumed
that our semi-classical construction of the fields ϕ was a good one. But in reality, there is no physical
interpretation in the parameters of the Lagrangian, be they ϕ, m, or λ. The only thing that is physical
are S matrix elements and the location of the pole of the propagator (which we called mass before). We
have now found S matrix elements that made no sense whatsoever. Is it therefore maybe possible that
our choice of parameters in L were bad?

Since we would have to measure these parameters by studying S matrix elements, we can not really
predict ϕϕ → ϕϕ scattering since we do not yet know λ. Would it therefore be possible to first measure
ϕϕ → ϕϕ, calculate λ and then measure for example ϕϕ → ϕϕϕϕ as a prediction? The parameter λ in
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the Lagrangian is meaningless, the only thing that matters are relations between observables; λ is just a
convenient intermediary.

Let us therefore add labels to our old Lagrangian to indicate that these quantities were a first guess,
called bare quantities

L =
1

2
(∂µϕ0)

2 − 1

2
m2

0ϕ
2
0 −

λ0
4!
ϕ40 . (421)

When we calculated S matrix elements with these bare quantities, we would them to depend on the
regulator. To cancel this dependency, the bare parameters need to depend on the regulator, denoted by
R, themselves, i.e.

L0(R) =
1

2
(∂µϕ0(R))2 −

1

2
m0(R)2ϕ0(R)2 −

λ0(R)
4!

ϕ0(R)4 . (422)

This means that the bare coupling λ0, mass m0, and field ϕ0 are meaningless, so let us relate them to
meaningful quantities

ϕ0(R) = Z
1/2
ϕ (R) ϕ , m0(R) = Zm(R) m, λ0(R) = Zλ(R) λ . (423)

We want the renormalised quantities to be physical, i.e. not depend on R which means that the Z
factors also need to depend on the regulator. These quantities are called renomalisation constants and
more specifically, Zϕ is the field strength renormalisation, Zm is the mass renormalisation, and Zλ is the
coupling renormalisation.

When expressing the bare Lagrangian using renormalised objects, we find

L0 =
1

2
Zϕ(∂µϕ)

2 − ZϕZ2
m

1

2
m2ϕ2 − Z2

ϕZλ
λ

4!
ϕ4 . (424)

Expanding the Zi = 1 + λδZi +O(λ2), we can rearrange this to be

L0 =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 − λ

4!
ϕ4

+ λ δZϕ
1

2
(∂µϕ)

2 − λ(δZϕ + 2δZm)
1

2
m2ϕ2 − λ(δZλ + 2δZϕ)

λ

4!
ϕ4 +O(λ2) .

(425)

The first line of this is just the same as before and we have the same Feynman rules to use for our one-
loop calculation. The new terms essentially give rise to new Feynman rules that are O(λ). The δZi are
usually referred to as counterterms and therefore the resulting vertices are called counterterm vertices.
We therefore complement our set of Feynman rules by

p = iλ
(
p2δZϕ −m2(δZϕ + 2δZm)

)
, (426)

= −iλ2
(
2δZϕ + δZλ

)
. (427)

When adding these to our calculations, we need to be careful and expand to the same order in λ for each
term.

7.2.1 Cut-off regularisation

We have

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩
∣∣∣
1L+CT

= −m
2λ

32π2

(
Λ2

m2
− log

Λ2

m2

)
+ λ

(
p2δZϕ −m2(δZϕ + 2δZm)

)
+O

(
(Λ/m)0

)
,

(428)

⟨p4p3|T |p2p1⟩
∣∣∣
1L+CT,p=0

=
3λ2

32π2
log

Λ2

m2
− λ2

(
2δZϕ + δZλ

)
+O

(
(Λ/m)0

)
. (429)
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We can now all but read of the counterterms. For ⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩, we want this to hold regardless of
what m2 and p2 are, so just collect coefficients. The only solution is

δZϕ = 0 , (430a)

δZm = − 1

64π2

( Λ2

m2
− log

Λ2

m2

)
, (430b)

δZλ =
3

32π2
log

Λ2

m2
. (430c)

Note that this choice was not unique. We could have added more or less finite terms as long as we remove
the Λ dependence. The choice we made is called the renormalisation scheme and it is possible to convert
between different schemes. For example, we could have chosen Zλ such that the one-loop four-point
function is not just finite but zero for p = 0.

7.2.2 Dimensional regularisation

We can do the same here

⟨Ω|T{ϕ(x)ϕ(y)}|Ω⟩
∣∣∣
1L+CT

=
m2λ

16π2

1

ϵ
+ λ

(
p2δZϕ −m2(δZϕ + 2δZm)

)
+O(ϵ0) , (431)

⟨p4p3|T |p2p1⟩
∣∣∣
1L+CT,p=0

=
3λ2

16π2

1

ϵ
− λ2

(
2δZϕ + δZλ

)
+O(ϵ0) , (432)

and find

δZϕ = 0 , (433a)

δZm =
1

32π2

1

ϵ
, (433b)

δZλ =
3

16π2

1

ϵ
. (433c)

This scheme is famous enough to have its own name, minimal subtraction (MS).
There is one more modification we would like to make. Consider the renormalised result expanded to

the finite term

⟨p4p3|T |p2p1⟩
∣∣∣
1L+CT,p=0

= − 3λ2

16π2

(
γE − log(4π)︸ ︷︷ ︸− log

µ2

m2

)
, (434)

with Euler’s constant (not be confused with e

γE =
d

dx
Γ(1− x)

∣∣∣
x=0

= 0.577216.. . (435)

This and the log(4π) are artefacts of our calculation and not physical. They are therefore almost univer-
sally removed by modifying the renormalisation constants to be

δZϕ = 0 , (436a)

δZm =
1

32π2

1

ϵ
(4π)ϵe−γEϵ , (436b)

δZλ =
3

16π2

1

ϵ
(4π)ϵe−γEϵ . (436c)

This scheme is now called modified minimal subtraction (MS).

7.3 Calculation of ϕϕ→ ϕϕ at non-zero momentum

We have used the p = 0 case to fix the coupling but we can still calculate the one-loop corrections to
ϕϕ→ ϕϕ scattering. To do this, we write down the full diagram, including momentum dependence

⟨p4p3|T |p2p1⟩
∣∣∣
1L

= (437)

=
−iλ2

2
µ2ϵ

∫
ddk

(2π)d
1

k2 −m2

1

(k + p1 + p2)2 −m2︸ ︷︷ ︸
I

+(p2 ↔ p3) + (p2 ↔ p4) . (438)
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To solve this loop integral we employ a trick called Feynman parametrisation

1

AB
=

∫ ∞

0

dxdy
δ(· · · )

(xA+ yB)2
. (439)

The delta function can either be δ(1− x− y) or δ(1− x). We will choose the former. We can now write
with Q = p1 + p2

I = µ2ϵ

∫
dxdy

ddk

(2π)d
δ(1− x− y)(

x
[
k2 −m2

]
+ y
[
(k +Q)2 −m2

])2 (440)

= µ2ϵ

∫ 1

0

dy

∫
ddk

(2π)d
1(

(k +Qy)2 −m2 + (1− y)yQ2
)2 . (441)

In the last step, we have completed the square in the denominator and can now shift k → k+Qy to have
once again

I = µ2ϵ

∫ 1

0

dy

∫
ddk

(2π)d
1(

k2 −m2 + (1− y)yQ2
)2 = µ2ϵ Γ(ϵ)

(2π)d

∫ 1

0

dy
(
m2 +Q2(y − 1)y

)−ϵ
. (442)

This integral can be evaluated for example using Mathematica

I =
( µ2

m2

)ϵΓ(−1 + ϵ)

4(4π)d/2
β2 − 1

β

(
2F1

[
1, 2− 2ϵ

2− ϵ
;
β − 1

2β

]
− 2F1

[
1, 2− 2ϵ

2− ϵ
;
β + 1

2β

])
(443)

=
1

16π2

(
1

ϵ
− γE + log(4π) + 2 + log

µ2

m2
+ β log

β − 1

β + 1
+O(ϵ)

)
, (444)

where we have introduced the Gauss-hypergeometric function and β =
√

1− 4m2/Q2. Adding all dia-
grams, we have with βs, βt, and βu defined by their Mandelstam variables

⟨p4p3|T |p2p1⟩
∣∣∣
1L

=
λ2

16π2

(
3

ϵ
− 3γE + 3 log(4π) + 6 + 3 log

µ2

m2

+ βs log
βs − 1

βs + 1
+ βt log

βt − 1

βt + 1
+ βu log

βu − 1

βu + 1
+O(ϵ)

)
.

(445)

Renormalising the coupling in the MS scheme, we arrive at

⟨p4p3|T |p2p1⟩
∣∣∣
1L

=
λ2

16π2

(
6 + 3 log

µ2

m2
+ βs log

βs − 1

βs + 1
+ βt log

βt − 1

βt + 1
+ βu log

βu − 1

βu + 1

)
. (446)

7.4 Renormalisibility

You may now wonder whether renormalisation is always possible. Can we always find finitely many Zi to
fix all divergences of our theory to any order in perturbation theory? If so, the theory is predictive once
all n parameters of the Lagrangian have been fixed using n measurements. Any such theory is called
renormalisable and one can show that the Standard Model of particle physics (as well as QED and QCD
separately) is renormalisable. However, certain theories like the Fermi description of the beta decay or
the simplest quantum theory of gravity are not renormalisable.

7.4.1 For scalar theories

The first step of showing whether a theory is renormalisable is to consider the superficial degree of
divergence of the diagrams it can generate. The singularities we need to remove are due to the large k
behaviour and we have seen above that each loop gives a factor of d4k and each propagator a factor of
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1/(k2−m2) ∼ k−2 Consider therefore a diagram at L loop with P internal lines. The degree of divergence
D is defined as the scaling of the integrand for large k and for our scalar theory it is

D = 4L− 2P . (447)

If D < 0, the resulting integral is superficially finite and we can ignore it for our discussion of renormal-
isation. If D > 0, the integral is definitely divergent and needs to be considered. The case of D = 0
cannot be decided through power-counting and the integral actually needs to be computed (hence the
superficial).

One can show that for any Feynman diagram with V vertices (Euler’s formula)

L = P − V + 1 (448)

You may have seen this written as the Euler characteristic χ = V −E + F = 2 for a polyhedron with V
vertices, E edges and F = L+ 1 faces (those included by the loop and the outside).

Proof of Euler’s formula for graphs
Begin with a single vertex, i.e. V = 1, P = 0, L = 0. This satisfies Euler’s formula trivially. Using
induction, we can now either

� add a vertex by connecting it with a propagator/edge to the existing ones (V → V +1 , P → P +1).
(448) remains satisfied.

� connect two existing vertices with a propagator/edge. This creates a new loop/face (P → P + 1,
L→ L+ 1). (448) remains satisfied.

If we work in a ϕn theory, any vertex needs to be connected to n different lines. These could either be one
of the P internal (in which case they are shared between two vertices) or N external lines Mathematically,

2P +N = nV (449)

Therefore, we find for D

D = (n− 4)V + 4−N . (450)

For ϕ3 and ϕ4, we can easily see that the only divergent diagrams are N ≤ 4. Since there are only finitely
many such diagrams we can always subtract the divergence with a counterterm.

Note that we have to go through the above discussion step-by-step, order-by-order. We can only
consider L = 2 once we have calculated all counterterms for L = 1 etc. This is because of diagrams like

M(2)(ϕϕϕ→ ϕϕϕ) ⊃ . (451)

Superficially, this diagram (n = 4, L = 2, N = 6, V = 4, P = 5) should be finite with D = −2. However,
if we only consider the tadpole that is attached to the ‘main’ loop

M(2)(ϕϕϕ→ ϕϕϕ) ⊃ . (452)

This sub-diagram (L = 1, N = 2, V = 1, P = 1), which we could have decided to calculate first, has
D = 2 and is clearly divergent. However, it also renormalised by the counterterm for Zm and Zϕ so that

M(2)(ϕϕϕ→ ϕϕϕ) ⊃ + = finite . (453)
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n
divergent N

[λ]
L = 1 L = 2 L = 3 L = 4

3 1, 2 1 none none GeV1

4 2, 4 2, 4 2, 4 2, 4 GeV0

5 ≤ 6 ≤ 7 ≤ 8 ≤ 9 GeV−1

6 ≤ 8 ≤ 10 ≤ 12 ≤ 14 GeV−2

Figure 8: A list of ϕn theories and the number of counterterms required at each loop order.

This concept of sub-diagrams being renormalised order-by-order is crucial to the concept of renormalisi-
bility. We can therefore confidently state that for n = 4 the theory is renormalisable because N = 1 or
N = 3 are excluded from symmetry.

For the n = 3 case we already know that we only need to consider N ≤ 4 and we can introduce
counterterms Zϕ and Zm to handle the N = 2 case (which can be divergent for V = 2 since D = 2− V ).
Crucially, at higher loops the number of vertices grows and therefore D further decreases. This means
that only finitely many diagrams are divergent.

The N = 1 case
For the N = 1 case, we get these following divergent diagrams

∆ = + . (454)

Calculating the first term using cut-off regularisation, we find

∆ =
λ

2

∫
d4k

(2π)4
1

k2 −m2 + iϵ
+O(λ2) = λ

2

i

16π2
Λ2 . (455)

There is no operator in our Lagrangian to fix this, meaning we have to introduce a new term L ⊃ Y ϕ.
The resulting Feynman rule is

= −iY . (456)

The renormalisation of this operator ZY fixes the divergent diagrams but the operator also leads to a
non-zero vev

⟨0|ϕ(0)|0⟩ = iY +∆ . (457)

As long as the loop diagrams are also imaginary (which they are), the vev can be forced back to be zero,
i.e. ⟨0|ϕ(0)|0⟩ = 0, while keeping Y real.

For the n = 5 case we have a problem. Because D = −V + 4 − N , the number of counterterms we
need, i.e. the number of distinctly divergent N , grows as we increase the number of loops or vertices.
This means that, as we go higher in the perturbative expansion, we need ever more counterterms, severely
limiting the predictive power of our theory.

Base on the above discussion, we can define three types of theories (cf. also Figure 8).

� super-renormalisable theories like n = 3 where only finitely many diagrams are divergent (not
counting divergent sub-diagrams).

� renormalisable theories like n = 4 where infinitely many diagrams are divergent (not counting
divergent sub-diagrams) but the divergence can be remedied order-by-order using finitely many
counterterms.

� non-renormalisable theories like n ≤ 5 where we need infinitely many counterterms.
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ne Nγ M D

0 0 4 unobservable vacuum shift

0 1 3 vanishes because of ⟨jµ⟩

0 2 2 ZA

0 3 1 zero by Furry theorem

0 4 0 actually finite

2 0 1 Zψ

2 1 0 Ze

Figure 9: Superficiality divergent diagrams of QED and their fate

Non-renormalisable theories were long-held to be useless because of their lack of predictive power. How-
ever, if we view these theories merely as describing the low-energy behaviour of some unknown theory
we can still use them as an effective field theory (EFT) description.

We can view this description also in terms of the mass-dimension of the operator or coupling. As
we have discussed in the very beginning of the course, the action is dimensionless, meaning that L has
mass-dimension [L] = GeV4. Since [∂] = [m] = GeV, [ϕ] = GeV as well. This means that the coupling
of the renormalisable ϕ4 theory is [λ] = 1 and for the ϕ3 theory [λ] = GeV. For the non-renormalisable
ϕ5 theory we have [λ] = GeV−1 etc. Therefore, there is a direct mapping between the renormalisibility
of an operator and its mass dimension.

7.4.2 For QED

For QED the arguments work exactly the same way except that the mass dimension due to P changes.
For fermions, we have S ∼ 1/k and for photons Dµν

F ∼ 1/k2. Therefore,

D = 4L− Pe − 2Pγ = 4−Nγ −
3

2
Ne , (458)

for a diagram with Nγ external photons and Ne external electrons. Therefore, we deduce that there are
up to seven divergent amplitudes (since Ne needs to be even), as shown in Figure 9.
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A The Lehmann-Symanzik-Zimmermann reduction formula

For the full field ϕ(x), the EoM is not just (∂2 +m2)ϕ(x). However, we can still calculate this as∫
d3x eik·x(∂2 +m2)ϕ(x) =

∫
d3x eik·x(∂2t − ∇⃗2 +m2)ϕ(x)

∗
=

∫
d3x (∇⃗2eik·x)(∂2t +m2)ϕ(x) (459)

=

∫
d3x eik·x(∂2t + k⃗2 +m2)ϕ(x) =

∫
d3x eik·x(∂2t + E2

k⃗
)ϕ(x) , (460)

where we have used integration-by-parts at ∗. This makes no assumption on the structure of the field
except that it falls of quickly enough so that the boundary conditions do not contribute. Further, we
have used that k⃗2 +m2 = E2

k⃗
. Consider now

ieik·x(∂2t + E2
k⃗
) = eik·x(Ek⃗∂t + i∂2t + iE2

k⃗
− Ek⃗∂t)

= eik·x(Ek⃗ + i∂t)∂t + eik·xiEk⃗(Ek⃗ + i∂t)

= eik·x(Ek⃗ + i∂t)∂t + (∂te
ik·x)(Ek⃗ + i∂t) = ∂te

ik·x(Ek⃗ + i∂t) , (461)

where the derivative always acts to its right. This means our original expression becomes∫
d3x eik·x(∂2 +m2)ϕ(x) = −i

∫
d3x ∂t

[
eik·x(Ek⃗ + i∂t)ϕ(x)

]
. (462)

The field ϕ(x) here is still the full interacting field which we know little about. However, if we integrate
t = −∞ to t = +∞, the derivative turns the expression into its boundary terms∫ +∞

−∞
dt

∫
d3x eik·x(∂2 +m2)ϕ(x) = −i

∫
d3x eik·x(Ek⃗ + i∂t)ϕ(x)

∣∣∣t=+∞

t=−∞
. (463)

In these limits, we actually do understand the field ϕ as the in and out fields that fulfil the free KG
equation and can be written in terms of a and a† operators. However, we need to keep renormalisation
in mind. The free field ϕ0 is related to the interacting field through (423), modifying (134) and (137).

Z
1/2
ϕ ϕin = lim

t→−∞
ϕ(t) =

∫
d3k

(2π)3
1√
2Ek⃗

[
ain(k⃗)e

−ik·x + a†in(k⃗)e
ik·x
]
, (464)

Z
1/2
ϕ ϕout = lim

t→+∞
ϕ(t) =

∫
d3k

(2π)3
1√
2Ek⃗

[
aout(k⃗)e

−ik·x + a†out(k⃗)e
ik·x
]
. (465)

Let us therefore calculate for a free field ϕ0 which we will either identify with ϕin or ϕout

eik·x(Ek⃗ + i∂t)ϕ0(x) =

∫
d3p

(2π)3
1√
2Ep⃗

eik·x(Ek⃗ + i∂t)
[
a(p⃗)e−ip·x + a†(p⃗)eip·x

]
=

∫
d3p

(2π)3
1√
2Ep⃗

[
a(p⃗)(Ek⃗ + Ep⃗)e

−i(p−k)·x + a†(p⃗)(Ek⃗ − Ep⃗)e
−i(−p−k)·x

]
.

(466)

Integrating over d3x and using (88)∫
d3x eik·x(Ek⃗ + i∂t)ϕ0(x) =

∫
d3p

(2π)3
1√
2Ep⃗

[
a(p⃗)(Ek⃗ + Ep⃗)(2π)

3e−i(Ep⃗−Ek⃗
)tδ(3)(p⃗+ k⃗)

+ a†(p⃗)(Ek⃗ − Ep⃗)(2π)
3e−i(−Ep⃗−Ek⃗

)tδ(3)(−p⃗+ k⃗)
]

=
√

2Ek⃗ a(k⃗) . (467)

This means we have just found another way of expressing the destruction operator a. We can substitute
this into our expression and use ain for t→ −∞ and aout for t→ +∞ (using d4x instead of dtd3x)∫

d4x eik·x(∂2 +m2)ϕ(x) = −iZ−1/2
ϕ

√
2Ek⃗

(
aout(k⃗)− ain(k⃗)

)
,∫

d4x e−ik·x(∂2 +m2)ϕ(x) = +iZ
−1/2
ϕ

√
2Ek⃗

(
a†out(k⃗)− a

†
in(k⃗)

)
.

(468)
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In the limit of the free field, the two operators are identical so that this vanishes – as expected by the
EoM for ϕ0(x).

In (142), we have seen how to calculate the probability of a scattering from the amplitude

P ∼ |o⟨f |i⟩i|2 . (469)

The in-state |i⟩i (out-state |f⟩o) is created using a†in (a†out) from the vacuum |Ω⟩. For a process of n
particles to m particles, we have

|i⟩i =
√
2Ep⃗1a

†
in(p1) · · ·

√
2Ep⃗na

†
in(pn)|Ω⟩ =

( n∏
j=1

√
2Ep⃗ja

†
in(pj)

)
|Ω⟩ , (470)

⟨f |o = ⟨Ω|
√

2Eq⃗1aout(q1) · · ·
√
2Eq⃗maout(qm) = ⟨Ω|

( m∏
k=1

√
2Eq⃗kaout(qk)

)
. (471)

The amplitude therefore becomes

o⟨f |i⟩i = ⟨Ω|
( n∏
j=1

√
2Ep⃗jaout(pj)

)( m∏
k=1

√
2Eq⃗ka

†
in(qk)

)
|Ω⟩ , (472)

The operator product is naturally time-ordered so let us enforce this henceforth. We can now replace the
a†in and aout using (468)

o⟨f |i⟩i = ⟨Ω|T

{
n∏
j=1

[
iZ

−1/2
ϕ

∫
d4xj e

ipj ·xj (∂2j +m2)ϕ(xj) +
√
2Ep⃗jain(p⃗j)

]

×
m∏
k=1

[
iZ

−1/2
ϕ

∫
d4yk e−iqk·yk(∂2k +m2)ϕ(yk) +

√
2Eq⃗ka

†
out(q⃗k)

]}
|Ω⟩ . (473)

Note how the a†out(q⃗k) is currently all the way to the right of the expression, even though it is taken at
very early time. This means that time-ordering pushes it all the way to the left. Similarly, the ain(p⃗j)
will pushed to the right where it acts on the vacuum |Ω⟩. Dropping these disconnected terms, we have
and identifying the left-hand side with the S matrix element ⟨f |S|i⟩

o⟨f |i⟩i = ⟨f |S|i⟩ =
∫ [ n∏

j=1

d4xj
i√
Zϕ

eipj ·xj (∂2j +m2)

][ m∏
k=1

d4yk
i√
Zϕ

e−iqk·yk(∂2k +m2)

]
× ⟨Ω|T

{
ϕ(x1) · · ·ϕ(xn) · ϕ(y1) · · ·ϕ(ym)

}
|Ω⟩ . (474)

This result is known as the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula and it is the last
missing piece of our discussion. We can transform this into momentum space as well where we replace
∂2j → −p2j

⟨f |S|i⟩ =
∫ [ n∏

j=1

d4xj
−i√
Zϕ

eipj ·xj (p2j −m2)

][ m∏
k=1

d4yk
−i√
Zϕ

e−iqk·yk(q2k −m2)

]
× ⟨Ω|T

{
ϕ(x1) · · ·ϕ(xn) · ϕ(y1) · · ·ϕ(ym)

}
|Ω⟩ . (475)

We can re-interpret this by moving the factors of p2j −m2 and
√
Zϕ to the other side[ n∏

j=1

i
√
Zϕ

p2j −m2

][ m∏
k=1

i
√
Zϕ

q2k −m2

]
⟨f |S|i⟩ =

∫ n∏
j=1

d4xj e
ipj ·xj

∫ m∏
k=1

d4yk e−iqk·yk

× ⟨Ω|T
{
ϕ(x1) · · ·ϕ(xn) · ϕ(y1) · · ·ϕ(ym)

}
|Ω⟩ .

(476)

This is the relation we have been implicitly using in Section 3 when we related the S matrix element to
the (Fourier-transformed) correlation function.
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The correlation function ⟨Ω|T{ϕ · · ·ϕ}|Ω⟩ still contains the non-amputated pieces that we were trying
to figure out in (225). In general, these terms exist and do contribute to the off-shell correlation function

⟨Ω|T
{
ϕ · · ·ϕ

}
|Ω⟩ =

(
amputated

)
×
(
non-amputated

)
. (477)

The non-amputated pieces are just the bare propagator ⟨Ω|T{ϕ0ϕ0}|Ω⟩ which we calculated in (406)

⟨Ω|T
{
ϕ0ϕ0

}
|Ω⟩ = + + +

+ + + + · · · .

(478)

Some of these terms such as the third, fifth, and sixth are different from the others in that they can be
cut in half and just expressed through two or more copies. The terms for which this is not possible are
called 1PI. If we bundle all the 1PI corrections into a blob, we can write

−i1PI = = + + + · · · , (479)

⟨Ω|T
{
ϕ0ϕ0

}
|Ω⟩ = + + + · · ·

=
i

p2 −m2
0

+
i

p2 −m2
0

(−i1PI) i

p2 −m2
0

+
i

p2 −m2
0

(−i1PI) i

p2 −m2
0

(−i1PI) i

p2 −m2
0

.

(480)

The geometric series can be summed to result in the propagator

⟨Ω|T
{
ϕ0ϕ0

}
|Ω⟩ = i

p2 −m2
0 − 1PI

. (481)

This is to be compared to the equivalent renormalised expression ⟨Ω|T{ϕϕ}|Ω⟩ = iZϕ/(p
2 −m2)

⟨Ω|T
{
ϕ0ϕ0

}
|Ω⟩ = i

p2 −m2
0 − 1PI

∼ iZϕ
p2 −m2

+ regular . (482)

Since the LSZ formula requires us to pick out only the singular terms of the correlation function when
calculating S matrix elements, we have(√

Zϕ
)n+m⟨f |S|i⟩ = ⟨Ω|T{ϕ · · ·ϕ}|Ω⟩∣∣∣

singular
= Zn+mϕ ⟨Ω|T

{
ϕ · · ·ϕ

}
|Ω⟩
∣∣∣
amputated

. (483)

This is exactly what we stated in (226) without proving it

⟨f |S|i⟩ =
(√

Zϕ
)n+m⟨Ω|T{ϕ · · ·ϕ}|Ω⟩∣∣∣

amputated
. (484)

Confusingly this result is also sometimes referred to as the LSZ formula and it is our main recipe for
calculating S matrix elements: calculate the connected and amputated Feynman diagrams using the
correlation function, take the external legs on-shell and multiply with

√
Zϕ for each particle.
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List of acronyms

CCR canonical commutation relation

EoM equations of motion

LHC Large Hadron Collider

KG Klein-Gordon

QM quantum mechanics

QCD quantum chromodynamics

QED quantum electrodynamics

QFT quantum field theory

vev vacuum expectation value

dimreg dimensional regularisation

MS minimal subtraction

MS modified minimal subtraction

LSZ Lehmann-Symanzik-Zimmermann

1PI one-particle irreducible

EFT effective field theory
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