

MATH425

Quantum Field Theory

Homework Sheet 2

<https://math425.yannickulrich.com>

Academic Year 2025/26

Dr Yannick Ulrich

Issued: 14 November 2025

Due: 21 November 2025

Homework 1: A simple model of the muon decay (10 Pts.)

Context: A muon is a lepton like the electron but its mass is approximately $200\times$ larger ($m_e = 0.511$ MeV vs. $m_\mu = 105$ MeV). In the Standard Model of particle physics, the muon can decay into an electron and two neutrinos, i.e. $\mu \rightarrow e\nu\bar{\nu}$. This decay is mediated by a W boson

One can approximate this amplitude by replacing the W with a four-point vertex

In this exercise sheet we will simplify this further and treat the muon, electron and neutrino as scalar particle ϕ_1, ϕ_2, ϕ_3 respectively.

Consider the following theory

$$\mathcal{L} = \sum_{i=1}^3 \left[\frac{1}{2} (\partial_\mu \phi_i) (\partial^\mu \phi_i) - \frac{1}{2} m_i^2 \phi_i^2 \right] - \frac{1}{2!} \lambda \phi_1 \phi_2 \phi_3^2, \quad (3)$$

with $m_3 \equiv m_\nu = 0$.

- a) (2 Pts.) Write down the Feynman rules of this theory. You do not need to derive these from first principle.
- b) (1 Pts.) Calculate the amplitude for the process $\phi_1(P) \rightarrow \phi_2(p_1)\phi_3(p_2)\phi_3(p_3)$ as a proxy for $\mu \rightarrow e\nu\bar{\nu}$.

To calculate the total decay rate, we can make use of the fact that if we have a multi-particle phase space like $d\Phi_3$, we can write this as

$$d\Phi_3(\phi_1 \rightarrow \phi_2\phi_3\phi_3) = d\Phi_2\left(\phi_1(P) \rightarrow \phi_2(p_1)Q^2\right) d\Phi_2\left(Q^2 \rightarrow \phi_3(p_2)\phi_3(p_3)\right) \frac{1}{2\pi} dQ^2. \quad (4)$$

Here we have introduced a new parameter Q^2 which we can view as a fictitious particle that mediates the process with $Q = p_2 + p_3$. We will now calculate the differential decay rate $d\Gamma/dQ^2$.

- c) (2 Pts.) To do this, go first into the restframe of Q^2 where $\vec{p}_2^* = -\vec{p}_3^*$ and calculate

$$\int d\Phi_2(Q^2 \rightarrow \phi_3\phi_3) |\mathcal{M}|^2. \quad (5)$$

d) (2 Pts.) Calculate $|\vec{p}_1| = \sqrt{\Lambda}/(2m_1)$ to find Λ in terms of m_1 , m_2 , and Q^2 .

e) (2 Pts.) Calculate $d\Gamma/dQ^2$.

f) (1 Pts.) Set $m_2 = 0$ and calculate Γ .

SOLUTION:

a) We have three different propagators and one vertex

$$\text{---} = \frac{1}{p^2 - m_1^2} \quad (6)$$

$$\text{----} = \frac{1}{p^2 - m_2^2} \quad (7)$$

$$\text{.....} = \frac{1}{p^2} \quad (8)$$

$$\text{X} = -i\lambda \quad (9)$$

b) Therefore, the transition amplitude is

$$\mathcal{M}(\phi_1 \rightarrow \phi_2 \phi_3 \phi_3) = -i\lambda.$$

c) We begin by considering the two ϕ_3 particles in the frame where $\vec{p}_3 = -\vec{p}_2$. Here, we can consider a fictitious particle of mass $\sqrt{Q^2}$ decaying into the two ϕ_3 . From the lecture, we have

$$\int d\Phi(Q^2 \rightarrow \phi_3 \phi_3) = \int d\Omega^* \frac{1}{16\pi^2} \frac{|\vec{p}_3^*|}{\sqrt{Q^2}}.$$

We can use the $*$ to indicate that this is in this new frame. Here, $|\vec{p}_3| = |\vec{p}_2| = \sqrt{Q^2}/2$ because $m_3 = 0$. Since the matrix element does not depend on \vec{p}_3 or \vec{p}_2 , we can write

$$\int d\Phi(Q^2 \rightarrow \phi_3 \phi_3) |\mathcal{M}|^2 = \frac{\lambda^2}{32\pi^2} \int d\Omega^* = \frac{\lambda^2}{8\pi}.$$

Therefore,

$$d\Gamma = \frac{\lambda^2}{16\pi m_1} \int d\Phi(\phi_1 \rightarrow \phi_2 Q^2) (2\pi)^3 dQ^2.$$

d) Now $|\vec{p}_1|$ is no longer $m_1/2$. Instead, we start with $P = p_1 + (p_2 + p_3)$ with $(p_2 + p_3)^2 = Q^2$ and $\vec{P} = 0$. We can also write

$$Q^2 = (p_2 + p_3)^2 = (P - p_1)^2 = m_1^2 - 2P \cdot p_1 + m_2^2. \quad (10)$$

Since $P = (m_1, 0, 0, 0)$, $P \cdot p_1 = m_1 E_1$ and therefore,

$$E_1 = \frac{Q^2 - m_1^2 - m_2^2}{-2m_1}. \quad (11)$$

Since $m_2^2 = E_1^2 - |\vec{p}_1|^2$, we can write

$$|\vec{p}_1| = \frac{\sqrt{Q^4 - 2Q^2m_1^2 + m_1^4 - 2Q^2m_2^2 - 2m_1^2m_2^2 + m_2^4}}{2m_1} = \frac{\sqrt{\Lambda}}{2m_1}, \quad (12)$$

where we have introduced $\Lambda = Q^4 - 2Q^2m_1^2 + m_1^4 - 2Q^2m_2^2 - 2m_1^2m_2^2 + m_2^4$

e) For the second part, we once again use the equation from the lecture

$$\int d\Phi(\phi_1 \rightarrow \phi_2 M) = \int d\Omega \frac{1}{16\pi^2} \frac{|\vec{p}_1|}{m_1}.$$

Therefore,

$$\frac{d\Gamma}{dQ^2} = \frac{\sqrt{\Lambda}}{m_1^3} \frac{\lambda^2}{256\pi^3}.$$

f) We now have

$$\frac{d\Gamma}{dQ^2} = \frac{m_1 - Q^2}{m_1^3} \frac{\lambda^2}{256\pi^3}.$$

Integrating Q^2 from 0 to m_1^2

$$\Gamma = \frac{m_1 \lambda^2}{512\pi^3}$$