

MATH425

Quantum Field Theory

Homework Sheet 1

<https://math425.yannickulrich.com>

Academic Year 2025/26

Dr Yannick Ulrich

Issued: 10 October 2025

Due: 17 October 2025

Homework 1: Complex scalar field (8 Pts.)

Consider the following Lagrangian of the complex scalar field

$$\mathcal{L} = (\partial_\mu \phi)(\partial^\mu \phi)^* - m^2 \phi \phi^*. \quad (1)$$

Compared to the real scalar field we now have two *independent* fields ϕ and ϕ^* .

- a) (2 Pts.) Derive the equations of motion for $\phi(x)$ and $\phi^*(x)$.
- b) (2 Pts.) Write down the conjugate momenta $\pi(x)$ and $\pi^*(x)$ as well as the Hamiltonian \mathcal{H} .
- c) (2 Pts.) Assume that $\phi(x)$ is a solution to the equations of motion to show that we have a conserved current in

$$j^\mu = -i(\phi \partial^\mu \phi^* - \phi^* \partial^\mu \phi). \quad (2)$$

- d) (2 Pts.) Explain why the general complex solution is given by

$$\phi(x) = \int \frac{d^3 p}{(2\pi)^3} \sqrt{\frac{1}{2E_{\vec{p}}}} \left[a_{\vec{p}} e^{-ip \cdot x} + b_{\vec{p}}^* e^{ip \cdot x} \right]_{p^0 = E_{\vec{p}}}, \quad (3)$$

where $a_{\vec{p}}$ and $b_{\vec{p}}$ are independent.

SOLUTION:

- a) We have two Euler-Lagrange equations

$$\begin{aligned} 0 &= \frac{\partial}{\partial x_\mu} \frac{\partial \mathcal{L}}{\partial (\partial^\mu \phi)} - \frac{\partial \mathcal{L}}{\partial \phi}, \\ 0 &= \frac{\partial}{\partial x_\mu} \frac{\partial \mathcal{L}}{\partial (\partial^\mu \phi^*)} - \frac{\partial \mathcal{L}}{\partial \phi^*}. \end{aligned}$$

We have by appropriately raising and lowering the μ index

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial (\partial^\mu \phi)} &= \partial_\mu \phi^* \\ \frac{\partial \mathcal{L}}{\partial (\partial^\mu \phi^*)} &= \partial_\mu \phi, \\ \frac{\partial \mathcal{L}}{\partial \phi} &= -m^2 \phi^* \\ \frac{\partial \mathcal{L}}{\partial \phi^*} &= -m^2 \phi. \end{aligned}$$

Therefore,

$$0 = \partial^\mu \partial_\mu \phi^* + m^2 \phi^*,$$

$$0 = \partial^\mu \partial_\mu \phi + m^2 \phi.$$

b) The π and π^* fields are defined as

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \dot{\phi}^*,$$

$$\pi^* = \frac{\partial \mathcal{L}}{\partial \dot{\phi}^*} = \dot{\phi}$$

And therefore the Hamiltonian with $\phi_1 = \phi$ and $\phi_2 = \phi^*$

$$\mathcal{H} = \sum_i \dot{\phi}_i \pi_i - \mathcal{L} = \dot{\phi} \pi + \dot{\phi}^* \pi^* - \dot{\phi} \dot{\phi}^* + (\vec{\nabla} \phi)(\vec{\nabla} \phi^*) + m^2 \phi \phi^* = \pi^* \pi + (\vec{\nabla} \phi)(\vec{\nabla} \phi^*) + m^2 \phi \phi^*,$$

because the fields ϕ and π are assumed to commute.

c) To show this, we calculate $\partial_\mu j^\mu$

$$\begin{aligned} \partial_\mu j^\mu &= -i \left(\partial_\mu (\phi \partial^\mu \phi^*) - \partial_\mu (\phi^* \partial^\mu \phi) \right) \\ &= -i \left((\partial_\mu \phi)(\partial^\mu \phi^*) + \phi (\partial_\mu \partial^\mu \phi^*) - (\partial_\mu \phi^*)(\partial^\mu \phi) - \phi^* (\partial_\mu \partial^\mu \phi) \right) \\ &= -i \left(\phi (\partial_\mu \partial^\mu \phi^*) - \phi^* (\partial_\mu \partial^\mu \phi) \right). \end{aligned}$$

Using the equations of motion for ϕ^* and ϕ , we have

$$\partial_\mu j^\mu = +m^2 i \left(\phi \phi^* - \phi^* \phi \right) = 0$$

d) This field fulfils the equation of motion

$$\begin{aligned} \partial^\mu \partial_\mu \phi(x) &= \int \frac{d^3 p}{(2\pi)^3} \sqrt{\frac{1}{2E_{\vec{p}}}} \partial^\mu \partial_\mu \left[a_{\vec{p}} e^{-ip \cdot x} + b_{\vec{p}}^* e^{ip \cdot x} \right]_{p^0=E_{\vec{p}}} \\ &= \int \frac{d^3 p}{(2\pi)^3} \sqrt{\frac{1}{2E_{\vec{p}}}} (-p^2) \left[a_{\vec{p}} e^{-ip \cdot x} + b_{\vec{p}}^* e^{ip \cdot x} \right]_{p^0=E_{\vec{p}}}. \end{aligned}$$

As long as $p^2 = m^2$ as required by $p^0 = E_{\vec{p}}$, this is a solution. Unlike in the real case where we needed $\phi = \phi^*$, a and b can now be chosen independently.

Homework 2: Scalar electrodynamics (12 Pts.)

Consider the following Lagrangian

$$\mathcal{L} = (D_\mu \phi)(D^\mu \phi)^* - m^2 \phi \phi^* - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \quad (4)$$

with the covariant derivative

$$D_\mu = (\partial_\mu - ieA_\mu) \quad (5)$$

and field-strength tensor

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu. \quad (6)$$

a) (4 Pts.) Expand \mathcal{L} and identify the electromagnetic current j_μ and photon mass m_A^2 in terms of the field ϕ

$$\mathcal{L} \supset A^\mu j_\mu - m_A^2 A_\mu A^\mu - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}. \quad (7)$$

b) (8 Pts.) Derive the Maxwell equation as an Euler-Lagrange equation for A_μ

$$\frac{\partial}{\partial x_\mu} \frac{\partial \mathcal{L}}{\partial (\partial^\mu A_\nu)} - \frac{\partial \mathcal{L}}{\partial A_\nu} = 0 \quad (8)$$

How is this similar or different from what you are used to?

SOLUTION:

a)

$$\mathcal{L} = \partial_\mu \phi \partial^\mu \phi^* + A^\mu \underbrace{(ie(\phi^* \partial_\mu \phi - \phi \partial_\mu \phi^*))}_{j_\mu} - m^2 \phi \phi^* + \underbrace{e^2 \phi \phi^*}_{-m_A^2} A_\mu A^\nu - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

with

$$m_A^2 = -e^2 \phi \phi^*$$

$$j_\mu = ie(\phi^* \partial_\mu \phi - \phi \partial_\mu \phi^*)$$

b) We write

$$\frac{\partial \mathcal{L}}{\partial (\partial_\mu A_\nu)} = -F_{\mu\nu} \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial A_\nu} = j_\mu - 2m_A^2 A_\mu$$

and therefore the Euler Lagrange equation

$$\frac{\partial}{\partial x_\mu} F_{\mu\nu} = -j_\mu + 2m_A^2 A_\mu.$$

In the limit of $m_A \rightarrow 0$, this corresponds the classical electrodynamics.