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This bonus sheet is a collection of problems you may find useful. Please consider these questions in

addition to the exercises in the lecture notes.

Note: the content covered here is not necessarily the same as in the exam.

Homework 1: Quantum harmonic oscillator

The Hamiltonian for the quantum harmonic oscillator is given by Ĥ = p̂2

2m + mω2

2 q̂2.

a) (2 Pts.) Using the fact that [q̂, p̂] = i, rewrite the Hamiltonian with the raising and lowering

operators â and a† that have the communtation relations [a, a†] = 1.

b) (2 Pts.) What are the commutation relation of the operator and N = a†a with the Hamiltonian

operator?

c) (2 Pts.) With the help of the a and a† operators, construct the spectrum of energy eigenstates

of the Hamiltonian starting from the vacuum state |0⟩.

d) (1 Pts.) Find corresponding energy levels?

e) (1 Pts.) What is the energy level of the vacuum state |0⟩? How would you interpret this as in

implication for observable phenomena?

SOLUTION:

a) The Hamiltonian for a quantum harmonic oscillator is

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 .

We define the raising and lowering operators â and â† as

q̂ =
√

2mω
(â+ â†), p̂ = i

√
mω

2
(â† − â) .

Substituting these into the Hamiltonian, we find:

Ĥ = ω

(
â†â+

1

2

)
.

b) The number operator is N̂ = â†â. The commutation relations are

[Ĥ, â] = −ωâ, [Ĥ, â†] = ωâ† .

and for the number operator

[N̂ , â] = −â, [N̂ , â†] = â† .
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c) Define the vacuum state |0⟩ such that â|0⟩ = 0. The excited states are obtained by applying

â†

|n⟩ = (â†)n√
n!

|0⟩ .

d) The energy levels of the oscillator are

En = ω

(
n+

1

2

)
, n = 0, 1, 2, . . . .

e) The energy of the vacuum state |0⟩ is

E0 =
1

2
ω .

This is the zero-point energy, an inherent energy due to quantum fluctuations. It implies

particles cannot have zero energy, contributing to phenomena such as the Casimir effect.



Homework 2: Harmonic oscillator and Euler-Lagrange equations The potential function of a one

dimensional harmonic oscillator is given by

V (x) =
1

2
kx2.

a) (1 Pts.) Write the Lagrangian L = T −V , where T is the kinetic energy and V is the potential

energy.

b) (1 Pts.) Use the Euler-Lagrange equation to derive the equation of motion.

c) (2 Pts.) Using the initial conditions x(0) = 0 and ẋ(0) = v0, find the specific solution for x(t).

d) (2 Pts.) Write expressions for the kinetic energy T (t), potential energy V (t), and the total

energy E of the system. Prove that the total energy is conserved over time.

e) (2 Pts.) Suppose a damping force proportional to velocity is added to the system, such that

the equation of motion becomes mẍ + bẋ + kx = 0 where b is the damping coefficient. Solve

the new equation of motion for the underdamped case (where b2 < 4mk) and describe how the

motion differs from the undamped case.

SOLUTION:

a) The potential is V (x) = 1
2kx

2 and the kinetic energy T = 1
2mẋ

2. Therefore, the Lagrangian

is

L = T − V =
1

2
mẋ2 − 1

2
kx2 .

b) Using the Euler-Lagrange equation

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 .

we find

mẍ+ kx = 0 .

c) With initial conditions x(0) = 0 and ẋ(0) = v0, the solution to mẍ+ kx = 0 is

x(t) =
v0
ω

sin(ωt), where ω =

√
k

m
.

d) The kinetic energy is T (t) = 1
2mẋ

2 and potential energy is V (t) = 1
2kx

2. Using x(t) from

above, we find that the total energy E = T + V remains constant over time, indicating

conservation of energy.

e) For the damped equation mẍ+ bẋ+ kx = 0 with b2 < 4mk, the solution is

x(t) = e−γt
(
C1 cos(ω

′t) + C2 sin(ω
′t)
)
.

where γ = b
2m and ω′ =

√
ω2 − γ2. This represents oscillatory motion with a decreasing

amplitude due to damping.

To verify, substitute x(t) = e−γt (C1 cos(ω
′t) + C2 sin(ω

′t)) into the differential equation.



(a)

ẋ(t) = −γe−γt
(
C1 cos(ω

′t) + C2 sin(ω
′t)
)
+ e−γt

(
−C1ω

′ sin(ω′t) + C2ω
′ cos(ω′t)

)
(b)

ẍ(t) = e−γt
(
(γ2 − ω′2)(C1 cos(ω

′t) + C2 sin(ω
′t))− 2γω′(−C1 sin(ω

′t) + C2 cos(ω
′t))
)

Substituting ẍ(t), ẋ(t), and x(t) back into the equation mẍ+ bẋ+kx = 0, we find each term

balances, confirming that this is a solution. The underdamped motion is oscillatory with a

decaying amplitude due to the factor e−γt.



Homework 3: Real and complex scalar fields and dark matter scattering

The interaction Lagrangian in a theory with a real scalar field ϕ, and a complex scalar field ψ is given

by:

LI = y ϕψ†ψ .

a) (1 Pts.) Use the Feynman diagram technique to find the decay amplitude for the field ϕ.

b) (3 Pts.) Compute the decay rate Γ for process field ϕ→ ψ†ψ.

c) (1 Pts.) For which value of mψ is the decay rate maximal?

d) (2 Pts.) What is the highest value of mψ for which the decay rate is well defined? What is

the physical interpretation of this fact?

We can also view this as a simplified model of Dark Matter scattering

e) (1 Pts.) Using the Feynman diagram technique, write down the amplitude for ψ†(p1)+ψ(p2) →
ϕ(q1) + ϕ(q2).

f) (4 Pts.) Compute the corresponding total annihilation cross section in the limit that mϕ = 0,

and the relative velocity of ψ and ψ† is low.

g) (1 Pts.) What the annihilation rate of ψ and ψ†, in that case that their number densities are

given by n = nψ = nψ†?

SOLUTION:

a) We have a single diagram for the process ϕ→ ψ†ψ

M = P

p

q

= −iy .

b) From the lecture notes, we have

dΓ =
1

2mϕ
dΦ1→2|M|2 = 1

2mϕ
dΩ

1

16π2
|p⃗|
Ecm

y2 .

Setting Ecm = mϕ and m2
ψ = (mϕ/2)

2 − |p⃗|2 we have

Γ =
y2

16πmϕ

√√√√1−
4m2

ψ

m2
ϕ

.

c) Clearly mψ = 0 has Γ = y2/(16πmϕ).

d) If mϕ < 2mψ the process becomes inaccessible as the two ψ particles cannot be produced.



e) The Feynman diagrams are

M =
ψ

ψ†

ϕ

ϕ

+
ψ

ψ†

ϕ

ϕ

= (−iy)2
(

1

(p1 − q1)2 −m2
ψ

+
1

(p1 − q2)2 −m2
ψ

)

f)

dσ

dΩ
=

1

32π2
|M|2

4s

pf
pi

The amplitude is angle independent, so the dΩ integral can be evaluated and yields a factor

4π. Now, in the limit of small vrel, the kinematic variables can be expanded as

s ≈ 4m2
ψ and pi ≈ vrelmψ and pf ≈ mψ .

With (p1 − q1)
2 ≈ (p1 − q2)

2 ≈ −m2
ψ the matrix element is also expanded

M ≈ y2

m2
ψ

.

Thus we have (including the symmetry factor for identical final state particles)

σ =
1

128π

1

vrelm
2
ψ

y4

m4
ψ

.

g) The annihilation rate is given by

Γann = σnψvrel =
nψ
128π

1

m2
ψ

y4

m4
ψ



Homework 4: Renormalisation

Consider the bare Lagrangian

L =
1

2
(∂µϕ0)(∂

µϕ0)−
1

2
m2

0ϕ
2
0 −

λ0
3!
ϕ40

of a real scalar quantum field theory.

a) (10 Pts.) Calculate the 1PI contributions to ⟨Ω|T{ϕϕ}|Ω⟩ and ⟨p3, p4|S|p1, p2⟩ for vanishing

momenta.

b) (2 Pts.) Derive the counterterm Lagrangian by replacing the bare parameter ϕ0 → Z
1/2
ϕ ϕ,

m0 → Zmm and λ0 → Zλλ0 in terms of renormalised parameters and separating the counterterm

Lagrangian from the renormalised Lagrangian.

c) (5 Pts.) Express the degree of divergence of a diagram as a function of the number of vertices

V and external lines Ne.

d) (2 Pts.) For which Ne are diagrams finite after all subdivergences are subtracted?

e) (2 Pts.) Explain if this theory is renormalisable.

SOLUTION: See lecture notes.

a) cf. eqs. (414) and (418) or (423) and (424)

b) cf. eq. (428)

c) cf. eq. (454)

d) cf. Figure 8

e) cf. Section 7.4.1



Homework 5: Euler-Lagrange equations for ϕ3 + ϕ4

Consider the Lagrangian density L = L0 + LI , with

L0 =
1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2 and LI = − λ

3!
ϕ3 − λ

4!
ϕ4 .

a) (6 Pts.) Derive the equation of motion from

∂µ
[

∂L
∂(∂µϕ)

]
− ∂L
∂ϕ

= 0.

b) (4 Pts.) With the generalized momentum π(x) = (∂L)/(∂ϕ̇) write down the Hamiltonian

defined by

H =

∫
d3x[πϕ̇− L] .

c) (10 Pts.) Using the canonical commutation relations, show that iπ̇ = [π,H].

SOLUTION:

a) Using (∂µϕ)(∂
µϕ) = ηρσ∂

ρϕ∂σϕ, we have

∂

∂(∂µϕ)
(∂ϕ)2 = 2∂µϕ .

Therefore,

∂µ∂µϕ = −m2ϕ− 1

2!
λ3ϕ

2 − 1

3!
λ4ϕ

3

b) The generalised momentum is unchanged from the free case π = ϕ̇, so

H =

∫
d3x
[1
2
ϕ̇2 +

1

2
(∇ϕ)2 + 1

2
m2ϕ2 +

1

3!
λ3ϕ

3 +
1

4!
λ4ϕ

4 .

c) Using commutation algebra we can write

[π(x⃗), ϕ(y⃗)3] = ϕ(y⃗)[π(x⃗), ϕ(y⃗)2] + [π(x⃗), ϕ(y⃗)]ϕ(y⃗)2 = −3iϕ(y⃗)2 δ(x⃗− y⃗) .

[π(x⃗), ϕ(y⃗)4] = −4iϕ(y⃗)3 δ(x⃗− y⃗) .

We have already shown that

[π(x⃗), H0] = i(∇2ϕ(x⃗)−m2ϕ(x⃗))

and now can show that

[π(x⃗), HI ] = −i
∫ [

λ3
1

2
δ(x⃗− y⃗)ϕ(y⃗)2 + λ4

1

3!
ϕ(y⃗)3

]
d3y .

Therefore,

[π(x⃗), H] = i

[
∇2ϕ(x⃗)−m2ϕ(x⃗)− 1

2!
λ3ϕ(x⃗)

2 − 1

3!
λ3ϕ(x⃗)

3

]
= iπ̇(x⃗) .



Homework 6: Dirac field (6 Pts.)

The Dirac field may be written

ψ(x) =

∫
d3p

(2π)3
√
2Ep⃗

2∑
s=1

[
ψ(s)
p (x)as(p⃗) + ψ̃(s)

p (x)b†s(p⃗)
]
,

where

ψ(s)
p (x) = e−ip·xus(p) ,

ψ̃(s)
p (x) = eip·xvs(p) .

With the scalar product ⟨ψ1|ψ2⟩ =
∫
d3x ψ†

1ψ2, show that

⟨ψ(r)
p |ψ(s)

q ⟩ = δrs(2π)
32Ep⃗ δ

(3)(p⃗− q⃗).

SOLUTION:

⟨ψ(r)
p |ψ(s)

q ⟩ =
∫

d3xψ(r)†
p ψ(s)

q = ei(p
0−q0)t

∫
d3xe−i(p⃗−q⃗)·x⃗ψ(r)†

p ψ(s)
q



Homework 7: Wick theorem

Use the Wick theorem to calculate the symmetry factors of the diagrams in (190), (193), (210), (211),

(212), (213), (214) of the lecture notes.

SOLUTION: See lecture notes.


