MATH425
LIVERPOOL Quantum Field Theory
Homework Sheet O

Academic Year 2025/26
Dr Yannick Ulrich

; . Issued: 5 December
https://math425.yannickulrich.com

Due: never

This bonus sheet is a collection of problems you may find useful. Please consider these questions in

addition to the exercises in the lecture notes.

Note: the content covered here is not necessarily the same as in the exam.

Homework 1: Quantum harmonic oscillator

The Hamiltonian for the quantum harmonic oscillator is given by H= % + mé"Q Q2.

a) (2 Pts.)  Using the fact that [, p] = i, rewrite the Hamiltonian with the raising and lowering
operators @ and a' that have the communtation relations [a,a!] = 1.

b) (2Pts.) What are the commutation relation of the operator and N = a'a with the Hamiltonian
operator?

c¢) (2Pts.) With the help of the a and a! operators, construct the spectrum of energy eigenstates
of the Hamiltonian starting from the vacuum state |0).

d) (1 Pts.) Find corresponding energy levels?

e) (1 Pts.) What is the energy level of the vacuum state |0)? How would you interpret this as in
implication for observable phenomena?

SOLUTION:

a) The Hamiltonian for a quantum harmonic oscillator is
A2
g _ P L 2.2
H=_—+_-mwq.
om 2"

We define the raising and lowering operators @ and a' as

arah) p=i ™Gt —a
2mw(a+a), p=1 2((1 a) .

Substituting these into the Hamiltonian, we find:

. 1
H = afa + = ).
w(a a+2>

b) The number operator is N = a'a. The commutation relations are

q=

~

[H,d) = —wa, [H,a']=wal.

and for the number operator
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c¢) Define the vacuum state |0) such that a|0) = 0. The excited states are obtained by applying
Al
a

d) The energy levels of the oscillator are
1
E, :w<n+2>, n=0,1,2,....

e) The energy of the vacuum state |0) is
E() = -W.

This is the zero-point energy, an inherent energy due to quantum fluctuations. It implies
particles cannot have zero energy, contributing to phenomena such as the Casimir effect.




Homework 2: Harmonic oscillator and Euler-Lagrange equations The potential function of a one

dimensional harmonic oscillator is given by

1
V(z) = 5]{::02.

a) (1 Pts.) Write the Lagrangian L = T'— V', where T is the kinetic energy and V' is the potential
energy.

b) (1 Pts.) Use the Euler-Lagrange equation to derive the equation of motion.
c) (2 Pts.) Using the initial conditions z(0) = 0 and #(0) = vy, find the specific solution for z(t).

d) (2 Pts.)  Write expressions for the kinetic energy T'(¢), potential energy V(t), and the total
energy E of the system. Prove that the total energy is conserved over time.

e) (2 Pts.)  Suppose a damping force proportional to velocity is added to the system, such that
the equation of motion becomes mi + bx + kx = 0 where b is the damping coefficient. Solve
the new equation of motion for the underdamped case (where b2 < 4mk) and describe how the
motion differs from the undamped case.

SOLUTION:

a) The potential is V(z) = %k:ac2 and the kinetic energy T' = %ma’;Q. Therefore, the Lagrangian

1S

1 1
L:T—V:§m§52—§lm2.

b) Using the Euler-Lagrange equation
afor) o,
dt \ 0z ox

mi+kx=0.

we find

c) With initial conditions z(0) = 0 and #(0) = vy, the solution to mz + kz = 0 is
k

vy .
t) = — t h =
x(t) " sin(wt), where w -

d) The kinetic energy is T'(t) = $mdi?* and potential energy is V(t) = $kaz?. Using z(t) from
above, we find that the total energy £ = T + V remains constant over time, indicating

conservation of energy.
e) For the damped equation mi + bi + kx = 0 with b> < 4mk, the solution is

z(t) = e (Cy cos(w't) + Casin(w't)) .

where v = % and w' = y/w? —~2. This represents oscillatory motion with a decreasing

amplitude due to damping.

To verify, substitute z(t) = e~ (C1 cos(w't) + Co sin(w't)) into the differential equation.




i(t) = —ye " (Ch cos(w't) + Cysin(w't)) + e " (—Chw’ sin(w't) + Cow’ cos(w't))
(b)
#(t)=e ((72 — w?)(C cos(w't) + Cysin(w't)) — 29w (—C sin(w't) + Cy cos(w't)))

Substituting #(t), (t), and x(t) back into the equation m# + bx + kxz = 0, we find each term
balances, confirming that this is a solution. The underdamped motion is oscillatory with a

decaying amplitude due to the factor e=7*.




Homework 3: Real and complex scalar fields and dark matter scattering

The interaction Lagrangian in a theory with a real scalar field ¢, and a complex scalar field v is given
by:

Lr=yoyly.
a) (1 Pts.) Use the Feynman diagram technique to find the decay amplitude for the field ¢.
b) (3 Pts.) Compute the decay rate I' for process field ¢ — )Te).
c) (1 Pts.) For which value of m, is the decay rate maximal?
d) (2 Pts.)  What is the highest value of m, for which the decay rate is well defined? What is
the physical interpretation of this fact?
We can also view this as a simplified model of Dark Matter scattering

e) (1Pts.) Usingthe Feynman diagram technique, write down the amplitude for o (p1)+1(p2) —
o(q1) + &(q2)-

f) (4 Pts.) Compute the corresponding total annihilation cross section in the limit that my = 0,

and the relative velocity of 1 and 9 is low.

g) (1 Pts.) What the annihilation rate of ¥ and 91, in that case that their number densities are
given by n = ny = nyi?

SOLUTION:

a) We have a single diagram for the process ¢ — 1Tt

M= P ---- = —iy.

b) From the lecture notes, we have

1 1 1|
' = —d® 2= o 2.
2y ATl MI” = g dQes oy

Setting Eem = mg and mi = (mg/2)* — |p]* we have

2
y2 4m¢

I'= 1
16mmg my

c¢) Clearly my = 0 has I’ = y?/(16mm,).

d) If my < 2my, the process becomes inaccessible as the two 1) particles cannot be produced.




e) The Feynman diagrams are

do 1 |MPpy
dQ 3272 4s p;

The amplitude is angle independent, so the df) integral can be evaluated and yields a factor

4. Now, in the limit of small v,¢, the kinematic variables can be expanded as

CRS 4m?p and p; = vy, and py & My, .

With (p1 — ¢1)? = (p1 — ¢2)* = —mi the matrix element is also expanded

2
MMy,

Thus we have (including the symmetry factor for identical final state particles)

1 oyt
1287 vy mi mfp '
g) The annihilation rate is given by
n 1yt
Fapn = O Ty Urel = v a1

2 o4
1287 My, My,




Homework 4: Renormalisation

Consider the bare Lagrangian

1 1 Ao
L= 5(%%)(8"%) - §m3¢% - gqﬁ%
of a real scalar quantum field theory.

a) (10 Pts.)  Calculate the 1PI contributions to (QT{¢¢}|Q?) and (ps,ps|S|p1,pe) for vanishing

momenta.

b) (2 Pts.) Derive the counterterm Lagrangian by replacing the bare parameter ¢y — Z;/ 2¢,
mo — Zmm and A\g = Z)Ag in terms of renormalised parameters and separating the counterterm
Lagrangian from the renormalised Lagrangian.

c) (b Pts.) Express the degree of divergence of a diagram as a function of the number of vertices
V and external lines N,.

d) (2 Pts.) For which N, are diagrams finite after all subdivergences are subtracted?

e) (2 Pts.) Explain if this theory is renormalisable.

SOLUTION: See lecture notes.
a) cf. eqs. (414) and (418) or (423) and (424)
b) cf. eq. (428)
c) cf. eq. (454)
d) cf. Figure 8

e) cf. Section 7.4.1




Homework 5: Euler-Lagrange equations for ¢3 + ¢*

Consider the Lagrangian density £ = Ly + L, with

— 1 1 242 _ A 3 A 4
Lo = 5(3@)(6%) —5m 1) and Lr= —aqﬁ — a(b .
a) (6 Pts.) Derive the equation of motion from
w| 0L | 0L _
are)| 99
b) (4 Pts.) With the generalized momentum m(x) = (9£)/(d$) write down the Hamiltonian
defined by
H= /di”x[w—c].

c) (10 Pts.) Using the canonical commutation relations, show that i = [, H].

SOLUTION:
a) Using (9,0)(0"¢) = 1,00”$0° ¢, we have

0
9(0r¢)

((9@%))2 = 28,11(25‘
Therefore,
MOy = —m2p — L % — L\ ¢?
W I T
b) The generalised momentum is unchanged from the free case m = q.S, SO
1, 1 1 1 1
H— d3[727 20 200202 & Sk 4 it
[ 58+ 5(TeP + Jm 4 s+ g

c¢) Using commutation algebra we can write

[7(2), 6(9)°] = ¢(P)7(D), 9()°] + [7(Z), S(D]6(F)* = —3ip()* 6(F — §) -
[7(2), 6(§)"] = —4id(§)° 0(F - 7) -
We have already shown that
[7(Z), Hol = i(V?¢(Z) — m*$(T))

and now can show that

(m(@), 1) = i [ !A:),;a(a? - o)* + A4;¢<z7>3] &y,

Therefore,

[r(@), H] = i [v%s(f) —m20(#) — S Xab (@) ;qus(f)?’] = (7).




Homework 6: Dirac field (6 Pts.)

The Dirac field may be written

where

dgp : s (s
o0 = [ Gy > [ @) + 0 0]

V) (x) = e PTug(p),
G5 () = ey (p).

With the scalar product (i1 |e) = [d3z w;rz/zg, show that

W) = 6.5(2m)32E;6P) (5 - ).

SOLUTION:

r s 3 r s i(p°—q° 3. —i(p—q)Z,,(r s
<¢}g),¢é>>_/dw}g>wé>_e<p q)t/dxe (=07 ()1 (0)




Homework 7: Wick theorem

Use the Wick theorem to calculate the symmetry factors of the diagrams in (190), (193), (210), (211),
(212), (213), (214) of the lecture notes.

SOLUTION: See lecture notes.




