

MATH425

Quantum Field Theory

Homework Sheet 2

<https://math425.yannickulrich.com>

Academic Year 2025/26

Dr Yannick Ulrich

Issued: 14 November 2025

Due: 21 November 2025

Homework 1: A simple model of the muon decay (10 Pts.)

Context: A muon is a lepton like the electron but its mass is approximately $200\times$ larger ($m_e = 0.511$ MeV vs. $m_\mu = 105$ MeV). In the Standard Model of particle physics, the muon can decay into an electron and two neutrinos, i.e. $\mu \rightarrow e\nu\bar{\nu}$. This decay is mediated by a W boson

One can approximate this amplitude by replacing the W with a four-point vertex

In this exercise sheet we will simplify this further and treat the muon, electron and neutrino as scalar particle ϕ_1, ϕ_2, ϕ_3 respectively.

Consider the following theory

$$\mathcal{L} = \sum_{i=1}^3 \left[\frac{1}{2} (\partial_\mu \phi_i) (\partial^\mu \phi_i) - \frac{1}{2} m_i^2 \phi_i^2 \right] - \frac{1}{2!} \lambda \phi_1 \phi_2 \phi_3^2, \quad (3)$$

with $m_3 \equiv m_\nu = 0$.

- a) (2 Pts.) Write down the Feynman rules of this theory. You do not need to derive these from first principle.
- b) (1 Pts.) Calculate the amplitude for the process $\phi_1(P) \rightarrow \phi_2(p_1)\phi_3(p_2)\phi_3(p_3)$ as a proxy for $\mu \rightarrow e\nu\bar{\nu}$.

To calculate the total decay rate, we can make use of the fact that if we have a multi-particle phase space like $d\Phi_3$, we can write this as

$$d\Phi_3(\phi_1 \rightarrow \phi_2\phi_3\phi_3) = d\Phi_2\left(\phi_1(P) \rightarrow \phi_2(p_1)Q^2\right) d\Phi_2\left(Q^2 \rightarrow \phi_3(p_2)\phi_3(p_3)\right) \frac{1}{2\pi} dQ^2. \quad (4)$$

Here we have introduced a new parameter Q^2 which we can view as a fictitious particle that mediates the process with $Q = p_2 + p_3$. We will now calculate the differential decay rate $d\Gamma/dQ^2$.

- c) (2 Pts.) To do this, go first into the restframe of Q^2 where $\vec{p}_2^* = -\vec{p}_3^*$ and calculate

$$\int d\Phi_2(Q^2 \rightarrow \phi_3\phi_3) |\mathcal{M}|^2. \quad (5)$$

- d) (2 Pts.) Calculate $|\vec{p}_1| = \sqrt{\Lambda}/(2m_1)$ to find Λ in terms of m_1 , m_2 , and Q^2 .
- e) (2 Pts.) Calculate $d\Gamma/dQ^2$.
- f) (1 Pts.) Set $m_2 = 0$ and calculate Γ .