MATH425

Quantum Field Theory Homework Sheet 1

Academic Year 2025/26 Dr Yannick Ulrich

Issued: 10 October 2025

17 October 2025

Due:

https://math425.yannickulrich.com

Homework 1: Complex scalar field (8 Pts.)

Consider the following Lagrangian of the complex scalar field

$$\mathcal{L} = (\partial_{\mu}\phi)(\partial^{\mu}\phi)^* - m^2\phi\phi^*. \tag{1}$$

Compared to the real scalar field we now have two independent fields ϕ and ϕ^* .

- a) (2 Pts.) Derive the equations of motion for $\phi(x)$ and $\phi^*(x)$.
- b) (2 Pts.) Write down the conjugate momenta $\pi(x)$ and $\pi^*(x)$ as well as the Hamiltonian \mathcal{H}
- c) (2 Pts.) Assume that $\phi(x)$ is a solution to the equations of motion to show that we have a conserved current in

$$j^{\mu} = -i(\phi \partial^{\mu} \phi^* - \phi^* \partial^{\mu} \phi). \tag{2}$$

d) (2 Pts.) Explain why the general complex solution is given by

$$\phi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \sqrt{\frac{1}{2E_{\vec{p}}}} \left[a_{\vec{p}} e^{-ip \cdot x} + b_{\vec{p}}^* e^{ip \cdot x} \right]_{p^0 = E_{\vec{p}}}, \tag{3}$$

where $a_{\vec{p}}$ and $b_{\vec{p}}$ are independent.

Homework 2: Scalar electrodynamics (12 Pts.)

Consider the following Lagrangian

$$\mathcal{L} = (D_{\mu}\phi)(D^{\mu}\phi)^* - m^2\phi\phi^* - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
(4)

with the covariant derivative

$$D_{\mu} = (\partial_{\mu} - ieA_{\mu}) \tag{5}$$

and field-strength tensor

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \,. \tag{6}$$

a) (4 Pts.) Expand \mathcal{L} and identify the electromagnetic current j_{μ} and photon mass m_A^2 in terms of the field ϕ

$$\mathcal{L} \supset A^{\mu} j_{\mu} - m_A^2 A_{\mu} A^{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \,. \tag{7}$$

$$\frac{\partial}{\partial x_{\mu}} \frac{\partial \mathcal{L}}{\partial (\partial^{\mu} A_{\nu})} - \frac{\partial \mathcal{L}}{\partial A_{\nu}} = 0 \tag{8}$$

How is this similar or different from what you are used to?